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EFT of LSS

• Study regime of small corrections!
• Characterize terms!
• Calculable vs non-calculable (counter terms)!
• How many terms to achieve a desired accuracy?!
• What is the relation between results for different statistics

Properties of the EFT

• Write all terms consistent with symmetries: Equivalence principle!
• Non-locality in time
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2 MATIAS ZALDARRIAGA

• Historical Science. Where do we Stand? We have fossils.
• Precision of CMB, 50 years of CMB. Lead to impressively tight model.
• Universe started hot, so good laboratory dependence on high energy physics.
DM, Baryons, Neutrinos

• Fossils from before the Hot Big Bang, Connection with GR
• Forced to have a theory for the fossils outside hot big bang. Standard
theory is inflation.

• Inflation, what is it? Can we convince ourselves of the various aspects?
• What we know about these seeds. Planck very tough to improve con-
straints.

• Reflect on open questions in Cosmology. Open questions hard to make
progress in. Qualitative vs Quantitative

• Need LSS, need precision. Substantial progress is needed.
• Advertise EFT of LSS
• Open conceptual problems. Random space time, multiverse etc.
• Opportunities, maybe spheres. Local non-G as a motivation?
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1. Introduction

1.1. Some open questions.
Precision vs qualitative open questions: There are many open questions in cos-
mology, many things that will preoccupy us in the coming decades. Some of this
questions require searching for extremely small e↵ects to be extracted statistically
from large quantities of data. For other questions even crude measurements would
lead to progress.
The focus of this lectures is on developing tools for attacking some of the preci-

sion questions. But first let me give some examples.

1.1.1. Dark Energy. We have very good constraints on dark energy. The BAO is
one of our best tools but it requires precision. The goal for the next decade is to
make sub-percent measurements over a wide range of redshifts.

1.1.2. Neutrinos. We are on the verge of detecting neutrino masses cosmologically.
Again the e↵ects are small and on scales close to the non-linear scales.
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from large quantities of data. For other questions even crude measurements would
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1.1.1. Dark Energy. We have very good constraints on dark energy. The BAO is
one of our best tools but it requires precision. The goal for the next decade is to
make sub-percent measurements over a wide range of redshifts.

1.1.2. Neutrinos. We are on the verge of detecting neutrino masses cosmologically.
Again the e↵ects are small and on scales close to the non-linear scales.

Initial conditions

First correction

first “un-calculable” piece (starts linear)

“un-calculable” pieces!
 that starts quadratic 



Linear theory and scales in our Universe 
!
• Matter radiation equality 
• BAO scale 
• Neutrino free streaming

Corrections to power spectrum for scale-free initial conditions  
PRIMORDIAL COSMOLOGY AFTER PLANCK 3
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Precision vs qualitative open questions: There are many open questions in cos-
mology, many things that will preoccupy us in the coming decades. Some of this
questions require searching for extremely small e↵ects to be extracted statistically
from large quantities of data. For other questions even crude measurements would
lead to progress.
The focus of this lectures is on developing tools for attacking some of the preci-

sion questions. But first let me give some examples.

1.1.1. Dark Energy. We have very good constraints on dark energy. The BAO is
one of our best tools but it requires precision. The goal for the next decade is to
make sub-percent measurements over a wide range of redshifts.

1.1.2. Neutrinos. We are on the verge of detecting neutrino masses cosmologically.
Again the e↵ects are small and on scales close to the non-linear scales.

1.1.3. Inflation. We have seeds from before the Hot Big Bang!!! What do we know
so far?

• These initial perturbations were basically scale invariant.
• We have no evidence of fluctuations in the composition of the Universe
(adiabatic fluctuations).

• We have no evidence of primordial gravitational waves.
• There is no evidence of any departures from Gaussainity.
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1.1.2. Neutrinos. We are on the verge of detecting neutrino masses cosmologically.
Again the e↵ects are small and on scales close to the non-linear scales.

1.1.3. Inflation. We have seeds from before the Hot Big Bang!!! What do we know
so far?

• These initial perturbations were basically scale invariant.
• We have no evidence of fluctuations in the composition of the Universe
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• We have no evidence of primordial gravitational waves.
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“Not Calculable”
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Calculable

Calculable
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EFT of LSS in Lagrangian space

Various people1

1
School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

Derive formulas, provide interpretation, look at divergences, measure in sims?

I. THE EXPANSION PARAMETER OF PERTURBATION THEORY

Perturbation theory is written as an expansion of in � and v. The di↵erent loop orders count in the number of
power spectra in the answer. This counting is a bit misleading and hides the actual physical e↵ects that lead to
corrections and thus it is hard to understand intuitively when perturbation theory should be braking down.
To start with let us understand the relevant scales and let us restrict ourselves at first with one loop terms. Consider

the correction at a scale denoted by wavenumber k coming from the other scales. Inspection of perturbation theory
reveals that there are several di↵erent sources of corrections. Let us define:
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Traditionally we think that the parameter is just k3P (k) but it is useful to identify what the physical e↵ects are.
The corrections clearly involve integrals over the amplitude of fluctuations of the other modes so it seems relevant to
try to have an intuition of what they represent. In the UV there are parameters with additional powers of q in the
denominators, because these are less divergent they are not important for our discussion.
The parameters ✏

s

are related to motions of the particles because P (k)/k2 is just proportional to the power spectrum
of the displacement field. The ✏

�

parameters have to do with the density contrast.
One obvious point is that the requirement to have a reasonably good perturbation theory cannot by that all these

✏s be small. The easiest way to realize this is to think of power law initial conditions. In such cases one of either ✏
>

or ✏
<

will diverge. The fact that SPT gives finite answers for �3 < n < �1 implies that some of these quantities do
not actually matter.
Let us discuss them in turn.
• ✏

s<

is the parameter that we associate the the bulk flows. It compares the wavelength of the mode of interest is
the displacements induced by modes of longer wavelength than k. We know that this parameter disappears in equal
time correlators as all that these motions are doing is changing the location of the small scale structures in a random
fashion but not altering their statistical properties. In Fourier space these motions just multiply Fourier modes by
a random (time dependent) phase and thus cancels when taking the power spectrum. It does not cancel however
when computing unequal time statistics. In fact this term is responsible for the fact that thee density field calculated
in SPT decorrelates with the answer of N-body simulations at scales larger than the traditional non-linear scale for
LCDM. Note that for a power law spectrum ✏

s<

is divergent for all n < �1, the entire range over which SPT gives a
finite answer ! Thus for a power law initial condition SPT cannot be used to compute any unequal time correlator.
This can be seen by the fact that both P13 and P22 are IR divergent. Those divergencies cancel only for equal time
cross correlators. Notice that LPT does not expand in ✏

s<

and thus re-sums all the terms in SPT proportional to
powers of ✏

s<

.
• ✏

�<

is the classic parameter we have in mind as the expansion parameter of the perturbation theory. It clearly is
a physical parameter measuring the tidal e↵ects of the long modes on the short. This parameter diverges for n < �3
and it is indeed the case that SPT does not give a finite answer ✏

�<

is not finite. LPT is explicitly expanding in this
parameter when it expands the coordinate transformation @x

i

/@q

j

in Taylor series around the identity.
• ✏

�>

represents the integrated size of fluctuations in the density coming from modes of smaller scale than k is
clearly a fake parameter. It is divergent for n > �3 but SPT gives finite answers at one loop for a range of ns above it.
The physical reason why this parameter does not matter is mass conservation. Even if one rearranges mass violently
on small scales, creating large density contrast, one produces very small e↵ects of large scales. As we have learned

Motions produced by modes of larger scale than k

Motions produced by modes of smaller scale than k

Tides produced by modes of larger scale than k

Does not appear. 

✏s>

✏s<
✏�<



Contributions to the displacement field loop power spectrum 
!
We expect UV sensitivity to be more important as we go to higher loops

Integrand relevant for P13 

Integrand relevant for P15Arbitrary normalization
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companion papers [31, 32] we compare perturbation theory with the results of numerical simulations for the same
initial conditions. This is a more stringent test than what is presented here. Our goal in this paper is to reproduce the
comparison method used in the literature and try to relate the result to what we see in the more detailed comparison.
We will find that in terms of the maximum k where the perturbative calculation can be trusted both results agree.

This paper is organized as follows. After a brief review of the EFT of LSS, we consider in more detail the UV
sensitivity of the one- and two-loop integrals in Sec. II B and IIC. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. IID and an even simpler procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simulations and present our results. Also, we discuss the two-point
correlations functions that involve momentum.

II. THE EFT OF LSS

In the EFT of LSS one sets to solve perturbatively the following equations:

@⌧� + @i[(1 + �)vi] = @iu
i ,

@⌧v
i + Hvi + @i�+ vj@jv

i = � 1

a⇢
@j⌧

ij , (1)

4� =
3

2
H2⌦m� .

These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:

⌧✓ ⌘ �@i


1

a⇢
@j⌧

j

�
= ⌧det✓ + ⌧ stoch✓ . (2)

The deterministic part of the stresses ⌧det✓ can be modelled perturbatively. In the EFT we write schematically

⌧det✓ = ⌧det✓ [@i@j �̄]. (3)

The deterministic part of the stresses is a local function of the perturbative solution, and we have used the equivalence
principle to demand that it can only depend on second derivatives of the gravitational potential (higher spatial deriva-
tives and time derivatives can also appear). We have introduced �̄ = �/(3/2H2⌦m) so that @i@j �̄ is dimensionless
and 4�̄ = �. For the stochastic part, all we can do is model the statistical properties of ⌧ stoch✓ .

In the EFT of LSS ⌧det✓ is modeled as a power series in @i@j �̄ and its spatial and time derivatives. In addition
to the equivalence principle, mass and momentum conservation restrict the form of both ⌧det✓ and of the statistical
properties of ⌧ stoch✓ . In particular in Fourier space ⌧det✓ (k) needs to go to zero at least as k2 faster than the density
when k ! 0 and the power spectrum of ⌧ stoch✓ should go to zero at least as k4.

To calculate the one-loop power spectra in ⇤CDM, only the lowest order piece of ⌧det✓ is relevant. It is given by

⌧det✓

��
LO

= �d24�(1) = �d244�̄(1) , (4)

where �(1) is the linear solution of perturbation theory. In this formulation, because ⌧det✓ acts as a source in the
equations of motion, the time dependence of d2 will a↵ect the results. In particular it will be relevant to determine
the relative sizes of the corrections in the di↵erent two point functions involving � and ✓.
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We will find that in terms of the maximum k where the perturbative calculation can be trusted both results agree.

This paper is organized as follows. After a brief review of the EFT of LSS, we consider in more detail the UV
sensitivity of the one- and two-loop integrals in Sec. II B and IIC. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. IID and an even simpler procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simulations and present our results. Also, we discuss the two-point
correlations functions that involve momentum.
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These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
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can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
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The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:
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FIG. 1. Diagrams for the tree level, one- and two-loop expressions of the SPT power spectrum.

The case of the one loop bispectrum has already been considered in the literature [18, 19]. In that case the second
order counterterms are needed. This introduces three additional parameters for the spatial structure of ⌧det✓ . One can
write:

⌧det✓
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NLO

= �d24[�(1) + �(2)] � e14�2(1) � e24(sij(1)s
ij
(1)) � e3@is
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(1)@j�(1), (5)

with

sij =

✓
@i@j � 1

3
�(K)
ij 4

◆
�̄. (6)

In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,

� = �(1) + �(2) + �(3) + �(4) + �(5) + · · · (7)

where �(n) depends on the initial conditions to the n-th power and we have only written terms relevant for the two loop
calculation of the two point function. When computing the power spectrum, one considers the averages of h�(n)�(m)i.
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FIG. 2. Diagrams that are regularized in our approach. The dashed loops are the ones where the momenta is large and are
fixed by a counterterm.

At the tree level, the only possible order is n+m = 2 and therefore n = m = 1. For one loop, n+m = 4 so the two
possible terms are the mixed term between �(3) and �(1) or the square of �(2). At two loops we have n+m = 6 so the
options are 1-5, 2-4 or 3-3. In SPT one writes the perturbative solutions as2

�(n)(k) =

Z

q1

. . .

Z

qn

(2⇡)3�(D)(q1 + . . . qn � k)Fn(q1, . . . , qn)�0(q1) . . . �0(qn), (8)

where �0 stands for the initial density fluctuations. The di↵erent contributions to the power spectrum computation
can be represented using the diagrams in Fig. 1 and combine to the power spectrum as

P�� = P11 + 2P13 + P22 + 2P15 + 2P24 + P33-I + P33-II . (9)

The explicit expressions for the constituent power spectra are given in App. A. The integrals for the one- and two-
loop contributions to the above expression bear some UV-sensitivity or can be even divergent for certain input power
spectra. The EFT provides a framework in which these UV-sensitivities can be addressed and regularized with the
corresponding counterterms. That is to say, that the EFT counterterms provided by the stress tensor and its time
dependence in Eq. (1) should be able to capture and correct the UV-sensitivity of the SPT expression.

The equations of motion (1) only have quadratic non-linearities, so vertices in diagrams should only be cubic. That
is to say, the Fn kernels in the diagrams we showed in Fig. 1 are e↵ective time integrated diagrams that can be
constructed by having multiple cubic vertices joined by propagators (or Green’s functions) [4]. In the EFT, there are
additional diagrams due to the introduction of counterterms, or sources in the equations of motion.

The first thing one notices is that some of the two-loop diagrams contain inside of them a subdiagram that looks
like a one-loop diagram. The EFT procedure amounts to adding a counterterm that corrects the mistakes introduced
when a high momenta is running in a loop. This is schematically shown in Figure 2. If at least some of the two-
loop diagrams contain pieces that look like one-loop ones, then the same counterterms that have fixed the one-loop
subdiagram would fix the two-loop ones. To accomplish this, one would need to solve the equations of motions with
the one-loop counterterm as a source to obtain a solution linear in the amplitude of the counterterm but up to cubic
in the initial conditions �0. Because the counterterm will be a source in the equations of motion acting over time,
carrying out this calculation would require specifying the time dependence of the one-loop counterterm. This program
was carried out in [17] as well as in the case of the bispectrum [18, 19].

But even for the diagrams that naively look like those in the one-loop calculation, putting the one-loop counterterm
into the equations of motion does not necessarily fix all the loops correctly. The point is simple: in the one-loop case,
the diagram is computing the e↵ect of a short mode that evolves in a linear long wavelength background. Thus, the
time evolution of this background is given by the linear growth factor. In some of the two-loop diagrams the short
modes in the loop are evolving in a background that is quadratic or cubic and thus the details of their evolution
and the value of the counterterm could not be the same. This fact was already noted in the one-loop bispectrum

2 Note our shorthand notation for the integral and measure
Z

q
⌘

Z
d3q

(2⇡)3
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Furthermore we will express momenta with respect to the external momentum as q
2

= r
2

k and q
1

= r
1
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calculation, where it was shown that the counterterms coming from the time evolution of the linear counterterm are
not able to capture the UV-sensitivity of the SPT loops [18].

Of course, in addition to the terms that derive from the linear counterterm through the equations of motion, there
are those that arise from the new quadratic and cubic contributions to the stress tensor. Once all of these counterterms
are included, one has su�cient freedom to correct all UV mistakes at this order. The entire set of counterterms could
be fixed by studying the power spectrum, bispectrum and trispectrum.

In [17], the first two-loop calculation in the EFTofLSS, only the counterterms that follow from the leading order one
were kept. Thus, the one- and two-loop counterterms depended on only one free parameter (and its time dependence).
This was done mainly for simplicity, as one could not fit multiple parameters simultaneously from the available power
spectrum data. Here, we will take a similar strategy, in that we will also study a one-parameter family of counterterms,
but we will fix them in a di↵erent way. Because in both, our calculation and in [17], one is using an ansatz for the
two-loop counterterm, one should recognize that in all generality its amplitude could be somewhat di↵erent than the
one being calculated.

B. UV-sensitivity at one loop

The counterterms introduced in the EFT are there to model the e↵ects of the small scale dynamics on larger scale
modes. Thus, a place to look for an ansatz for the relative sizes of the EFT counterterms could be to study the e↵ect
of a shell of power at high loop momenta computed in SPT. We can fix the ratio between the various counterterms in
the EFT to the one given by this ansatz but leave the amplitude of the small scale power in the shell as one overall
free parameter. This ansatz makes the final results insensitive to the small scale power in the SPT calculation.

For this purpose, we start by computing the contribution of a shell in momentum space between ⇤h = 5 hMpc�1

and ⇤l = 1 hMpc�1 to the one-loop power spectrum in SPT. This choice is somewhat arbitrary, but provides us with
a su�ciently significant change to see the e↵ects and furthermore the lower limit is su�ciently far away from the
scales of interest k ⇡ 0.1 hMpc�1 to warrant a separation of scales. We call this contribution to the one-loop power
spectrum P sh

1loop = 2P sh
13 + P sh

22 and the results are shown in Fig. 3. We recover the standard result, that for ⇤CDM

at small wavenumbers the P sh
13 contribution dominates and scales as k2P11. The subdominant P sh

22 contribution scales
as k4. In this language, what is usually called the c2s correction in the EFT is nothing other than the functional form
of the k ! 0 limit of P sh

13 /k
2P11.

The value of P sh
1loop depends not only on the amplitude of the power added on the shell but also on the position

of the shell. In our ansatz for the counterterms, we can also use analytic expressions obtained in the limit that the
momentum of the shell (q1) is much bigger than the momentum of interest k ⌧ q1. We will call this limit P q1!1

1loop ,
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weighted by wavenumber squared. We see that the explicit calculation of the two loop counterterms P̄
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is proportional
to the naive estimate k

2

P
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F. Relative size of the corrections

Before comparing with simulations, we can take our model for the power spectrum and calculate the sizes of the
di↵erent terms. This comparison will allow us to estimate how well we expect our formulae to agree with simulations
and estimate reach of perturbation theory. In particular, now that we have an estimate of the two-loop terms and
their associated counterterms we can ask when they make a di↵erence relative to the one-loop terms and ask over
what range of ks it would be safe to fit for c2s when doing a one-loop calculation only. Our full two-loop EFT power
spectrum is

P = P11 + P1loop + Pctr,1loop + P̄2loop + Pctr,2loop. (27)

We can now compute two quantities:

P

P11
� 1 =

P1loop + Pctr,1loop + P̄2loop + Pctr,2loop

P11

�P � P11 � P1loop

2k2P11
= c2s � P̄2loop + Pctr,2loop

2k2P11
. (28)

The first of these two quantities indicates the size of the various terms as contributions to the power spectrum, the
second indicates the relative correction they would make to a fit of c2s after subtracting the explicit one loop SPT
calculation from the data. We show these quantities in Figure 5. The left panel shows that both P̄2loop and P̄ctr,2loop

make roughly a 5% correction to the power around k = 0.2 hMpc�1. Given that Pctr,2loop is uncertain because
we have not used three- and four point function measurements to obtain its amplitude but only have an ansatz, it
is di�cult to imagine that one could be more accurate than about one percent on these scales. The counterterm
is relatively steep, so even though it contributes 5% around k = 0.2 hMpc�1 at k = 0.5 hMpc�1 is makes an
order unity contribution. In the same panel, we also show the e↵ect of the c4sk

4P11 correction, which is at the sub
percent level for the wavenumbers considered here. Note however, that the coe�cient of this term should be fitted
independently, since it has to capture the subleading UV sensitivities in P13 and P15 that we have neglected so far.
We also estimate the three loop counterterm at the basis of our most simple counterterm ansatz, i.e., we consider it
to be given by �k2P̄2loop. This term leads to percent level corrections at k = 0.3 hMpc�1, so we should be worried
about similarly large corrections from the three loop calculation for even larger scales. Finally, we overplot the size
of the stochastic term estimated in [32]. Given that it leads to percent corrections at k = 0.25 hMpc�1, we should
not expect any perturbative approach to match the full power spectrum to a better accuracy than this. Actually, the
perturbative/deterministic calculation performed here should describe the non-linear power from which the stochastic
part has been removed.

As we show in the right panel of Fig. 5, when fitting for c2s, the combination P̄2loop +Pctr,2loop changes c2s by about
50% between k = 0.05 hMpc�1 and k = 0.20 hMpc�1. About half of this change is from the finite part of the two-loop
calculation and half from the counterterms. These two corrections are of the same amplitude at k = 0.18 hMpc�1.
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basically moving the shell to infinity. For the leading and sub-leading contributions we obtain:

P q1!1
13 = �k2P

61

630

Z

q

P (q)

q2
| {z }

l2⌘ 61
210�

2
d

+k4P
2

105

Z

q

P (q)

q4
+ . . . (10)

The leading contribution is proportional to the high-q contribution to the one dimensional displacement dispersion
�2
d = 1/6⇡2

R
dq P (q) and the shell power will thus be P sh

13 = �61/210k2�2
d,shP11. For the shell under consideration

here, we have �2
d,sh = 0.68 h�2Mpc2. It is interesting to note that the square of this coe�cient has a factor 100

stronger cut-o↵ dependence than the coe�cient of the subleading k4P contribution, which makes sense since the
integral of the latter is suppressed by two additional powers of q in the UV. Our strategy will be to add the e↵ect of
this shell of power computed up to two-loops to the standard SPT results with a free parameter.

This approach is equivalent to the EFT, where the e↵ect of a high-k shell can be captured by the leading counterterm
c2s (it should be noted that c2s is not equal to the parameter d2 in Eq. (4) as c2s is the result of a time integral over the
Green’s function and d2). In terms of the standard notation in the literature,

Pctr,1loop ⌘ �2k2c2sP11 (11)

and at the level of the density field it corresponds to the term �̃(1) = �c2sk
2�(1). It is common practice to fix the

coe�cient c2s after the full one-loop calculation has been subtracted from the data and we will adopt this convention
here. Thus, the true coe�cient 2 of the k2P11 part of the low-k limit of the data is fixed to be

2 = � 61

105
�2
d � 2c2s. (12)

Consequently, the number c2s e↵ectively contains all the higher order loop contributions to 2, their counterterms and
the true small scale contribution. In particular, no higher loop contributions to 2 should be calculated and to the
extend that such terms are present in higher order calculations, they should be removed.
Numerically, we will find below in accordance with previous studies that c2s is a positive number of order 1 h�2Mpc2.
This means that we are e↵ectively increasing the power in a high-k shell in perturbation theory, but the e↵ect is an
enhanced large scale damping of the non-linear power spectrum.

C. UV-sensitivity at two loops

We now evaluate3 the total two-loop power spectrum as well as its constituent pieces for two di↵erent cut-o↵s
⇤l = 1 hMpc�1 and ⇤h = 5 hMpc�1. As we show in Fig. 3, adding this shell of power primarily a↵ects the k2P11

coe�cient. This piece should be absorbed by the counterterm that was already introduced at one loop in the previous
section. The only relevant parts are the deviations from the k2P11 behavior for k > 0.1 hMpc�1. These are the
deviations that we want to capture. These non-trivial pieces should be captured by the two-loop counterterms.

In contrast to the one-loop calculation, we now have two momenta that are integrated over and thus we have to
distinguish two cases: i) both loop momenta are large (both loop momenta in the in the high-k shell, double-hard)
or ii) only one loop momentum is large with respect to the other momenta in the problem (one momentum in the
high-k shell, single-hard). The left panel of Fig. 3 shows these two contributions separately. We immediately see
that the double-hard limit is basically degenerate with the k2P11 behavior for all the ks of interest and thus is not
very relevant for our calculation. There is a slight upturn for high wavenumbers that we will discuss in more detail
below. The single-hard contribution also has a k2P11 part, in which we are not interested, but beyond this it has the
interesting new scale dependence that should be captured by new counterterms. This motivates us to consider the
single-hard limits of the two loop calculation.

The terms leading to the k2P11 contribution in the shell calculation are also present in the finite part of the two-loop
calculation, actually governing its low-k behaviour. If this contribution was kept in the final calculation, it would
change the value of the parameter of the one-loop counterterm c2s in Eq. (11) that was introduced to regularize the P13

contribution. As we stated in the previous section, our strategy is to fix this number after the one-loop calculation.
We thus decide to remove the k2P11 term from the finite part of the two-loop calculation. This can be done by either

3 The numerical integrals for the two-loop expressions are performed with the CUBA libraries [33] SUAVE routine employing the IR-safe
integrand [7, 16].
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D. Ansatz for the two-loop counterterm

Our ansatz to have a one parameter counterterm is to use:

P̄ sh = ↵(P sh
1loop + P̄ sh

2loop) , (19)

where ↵ is an overall free parameter that can be set by looking at the piece of the power spectrum that scales as
k2P11 at very low k and P̄ sh

2loop is the two-loop power spectrum obtained from the shell calculation with the degenerate

k2P11 piece removed. As we have seen above, all the relevant limits at one- and two-loop are proportional to �2
d, such

that we can relate our ansatz to the usual EFT language by setting ↵ = 210c2s/(61�
2
d).

More explicitly, for the counterterm at the two loop level we will consider

Pctr = ↵
h
2P q1!1

13 + 2P̄ q1!1
15 + 2P q1!1

24 + P q1!1
33�II

i

⌘ Pctr,1loop + Pctr,2loop . (20)

All the terms in the right hand side of Eq. (20) are proportional to �2
d, and in fact these are the only terms proportional

to �2
d. Hence, our ansatz is nothing other than choosing the value of �2

d by matching the low k behavior of the power
spectrum from simulations to the k2P11 template. Since this is an important point, let us repeat again the basic idea
of our approach. The relation between c2s and �2

d that is found at the one-loop level in Eq. (12) is used in order to
cure the UV sensitivity of the two-loop integrals. E↵ectively, for all occurrences of the problematic �2

d in the two-loop
integrals we add a c2s counterterm. This is what is shown in Eq. (20) and we end up with a one-parameter model for
the UV sensitive parts of the one- and two-loop integrals.

Finally, note that the standard IR cancellation when q2 ⌧ k ⌧ q1 still happens among the q1-limits computed
above: P15, P24 and P33�II . In this case the 1/q22 motion contributions cancel and only long wavelength tides survive:

P q1!1,q2!0
33�II = P (k)

Z

q1

Z

q2


� 3538

99225r21
+

61

1890

1

r21r
2
2

�
P (q1)P (q2) , (21)

2P q1!1,q2!0
24 = P (k)

Z

q1

Z

q2


� 1361863

5942475r21
� 61

945

1

r21r
2
2

�
P (q1)P (q2) , (22)

2P q1!1,q2!0
15 = P (k)

Z

q1

Z

q2


� 902354

4729725r21
+

61

1890

1

r21r
2
2

�
P (q1)P (q2) , (23)

2P q1!1,q2!0
15 + P q1!1,q2!0

33�II + 2P q1!1,q2!0
24 = �P (k)

Z

q1

Z

q2

12670991

27810783r21
P (q1)P (q2) . (24)

E. An even simpler ansatz

Finally, we could consider what is perhaps the simplest ansatz of all. Just as in the case of the stresses parametrized
by ⌧✓ in equation (5), one can parametrize the counterterms in such a way that one of the terms is just proportional
to the density computed in SPT. That is the terms relevant for the two-loop calculation at the level of the fields could
be written as:

� = �(1) + �(2) + �(3) + �(4) + �(5) � l24(�(1) + �(2) + �(3)) + . . . , (25)

where the ellipsis account for the terms arising from other quadratic and cubic counterterms. An extremely simple
ansatz is to set those additional terms to zero. This would lead to the following expression:

Pctr,simple = �k2l2
h
P11 + P1loop

i
. (26)

As we discussed earlier, neither of these ansatzes is expected to be perfect, and nothing short of fixing all the
counterterms by studying the three- and four-point functions or projections at the field level would be perfect. The
philosophy of this paper is to write down examples which are expected to have roughly the right size and use those
to asses how big these terms are expected to be while keeping in mind the uncertainty in their size. Fig. 4 compares
the two formulae proposed in this section. They are in reasonable agreement in terms of both the expected shape and
the size of the correction. One could definitely argue that Psimple is perhaps too simplified as one is ignoring e↵ects
that we know are there and are furthermore comparable to those being included. Our Pctr defined in Eq. (20) has all
the relevant terms included, although perhaps some of their relative amplitudes are not correct in detail.
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E. An even simpler ansatz

Finally, we could consider what is perhaps the simplest ansatz of all. Just as in the case of the stresses parametrized
by ⌧✓ in equation (5), one can parametrize the counterterms in such a way that one of the terms is just proportional
to the density computed in SPT. That is the terms relevant for the two-loop calculation at the level of the fields could
be written as:
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where the ellipsis account for the terms arising from other quadratic and cubic counterterms. An extremely simple
ansatz is to set those additional terms to zero. This would lead to the following expression:

Pctr,simple = �k2l2
h
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. (26)

As we discussed earlier, neither of these ansatzes is expected to be perfect, and nothing short of fixing all the
counterterms by studying the three- and four-point functions or projections at the field level would be perfect. The
philosophy of this paper is to write down examples which are expected to have roughly the right size and use those
to asses how big these terms are expected to be while keeping in mind the uncertainty in their size. Fig. 4 compares
the two formulae proposed in this section. They are in reasonable agreement in terms of both the expected shape and
the size of the correction. One could definitely argue that Psimple is perhaps too simplified as one is ignoring e↵ects
that we know are there and are furthermore comparable to those being included. Our Pctr defined in Eq. (20) has all
the relevant terms included, although perhaps some of their relative amplitudes are not correct in detail.
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Figure 6: Slices in real space, 100Mpc/h on the side (z = 0).

3.1.2 Accuracy of the reconstructed particle positions.

Let us now analyze the accuracy of the predicted positions and velocities, relative to the
ones obtained by N-body simulations. To illustrate the e↵ects of including the displacement
and velocity transfer functions, in Figure 6 we plot slices, 100Mpc/h on the side, 7.8Mpc/h
thick, through one of our N-body simulations in real space. The red dots denote the “true”
particle positions as calculated from the N-body code. Each red dot is connected with a
black segment to the approximated particle position (x = q + sF), obtained according to
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FIG. 5. Left panel: Estimate of the size of the corrections arising from various contributions to the two-loop calculation.
The finite part of the two-loop calculation leads to percent level corrections at k = 0.1 hMpc�1. We also show the corrections
from the square of the speed of sound term k

4

P

11

, which is suppressed over the range considered here. The size of the three-
loop counterterm can be estimated as O(1) ⇥ k

2

P̄

2loop

and leads to percent level contributions at k = 0.3 hMpc�1. We also
show the estimate for the stochastic part of the total power spectrum from [32] which leads to percent level corrections at
k = 0.25 hMpc�1. Right panel: Estimator for the leading EFT coe�cient c

2

s

. The model is evaluated for c

2

s

= 0.98 h

�2Mpc2

and the gray band shows the e↵ect of a 10% change in this value. Note that at k = 0.2 hMpc�1 the one-loop counterterm
and the two-loop correction are of the same order. The two-loop term leads to a considerable scale dependence of ĉ

2

s

for
k > 0.07 hMpc�1.

possible for wavenumbers exceeding k = 0.07 hMpc�1. Besides the broadband upturn, there are also considerable
BAO wiggles in the finite part of the two loop calculation.

At this point it is perhaps instructive to write an equation relating the change in the inferred value of c2s (�c2s) to
changes or errors in the power spectrum (�P ):

�c2s =
�P

P

1

2k2
⇠ �P/P

2%

✓
k

0.1 hMpc�1

◆�2

h�2Mpc2 ⇠ �P/P

0.2%

✓
k

0.03 hMpc�1

◆�2

h�2Mpc2 . (29)

For values of c2s around 1 h�2Mpc2 and a measurement at k ⇠ 0.1 hMpc�1, an accurate measurement of c2s requires
one to model all other contributions to the power spectrum at the sub-percent level. Besides that, the statistical error
should also be at this level. State of the art simulation codes and reasonable simulation volumes can deliver this level
of accuracy and precision. However, our estimates above show that at this scale, one needs to include the two-loop
terms. If one goes to k ⇠ 0.03 hMpc�1 higher loop contributions are negligible, but as we discuss later the required
10�3 level numerical precision might be challenging.

III. COMPARISON WITH SIMULATIONS

As a benchmark for the performance of the perturbation theory we employ a suite of dark matter only simulations
of the WMAP7 cosmology [34] (⌦m = 0.272, ⌦⇤ = 0.728, ns = 0.967, �8 = 0.81). We have run 16 simulations with
a box length of 1500 h�1Mpc (L simulation) and also one realization of a smaller size, higher resolution box with
500 h�1Mpc box length (M simulation). The simulations are initialized with the second order Lagrangian Perturbation
Theory code 2LPT [35] at redshift zi = 99 and the 10243 particles are subsequently evolved using GADGET2 [36] to
redshift z = 0. For more details on the simulations and some convergence tests see [31].

For the speed of sound in the one-loop EFT calculation we employ the following estimator

ĉ2s = �Pnl � P11 � P1loop

2k2P11
, (30)

where Pnl is the power spectrum from the simulations. In Fig. 6 we show the measurements at redshifts z = 0, 0.5, 1, 2
from our simulations. The data clearly show a scale dependence with significant deviations from the low-k limit at
higher wavenumbers. There are also distinct BAO wiggles in the measurement that have been noted in the literature
[37]. We have corrected the data for 2⇥ 10�4 level deviations in the linear growth factor, that are likely connected to
the integration accuracy in GADGET and would lead to a low-k upturn in this figure. Furthermore, we have cancelled
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FIG. 4. Comparison between the two-loop counterterm deduced from the divergencies and the one-loop power spectrum
weighted by wavenumber squared. We see that the explicit calculation of the two loop counterterms P̄

ctr,2loop

is proportional
to the naive estimate k

2

P

1loop

.

F. Relative size of the corrections

Before comparing with simulations, we can take our model for the power spectrum and calculate the sizes of the
di↵erent terms. This comparison will allow us to estimate how well we expect our formulae to agree with simulations
and estimate reach of perturbation theory. In particular, now that we have an estimate of the two-loop terms and
their associated counterterms we can ask when they make a di↵erence relative to the one-loop terms and ask over
what range of ks it would be safe to fit for c2s when doing a one-loop calculation only. Our full two-loop EFT power
spectrum is

P = P11 + P1loop + Pctr,1loop + P̄2loop + Pctr,2loop. (27)

We can now compute two quantities:

P

P11
� 1 =

P1loop + Pctr,1loop + P̄2loop + Pctr,2loop

P11

�P � P11 � P1loop

2k2P11
= c2s � P̄2loop + Pctr,2loop

2k2P11
. (28)

The first of these two quantities indicates the size of the various terms as contributions to the power spectrum, the
second indicates the relative correction they would make to a fit of c2s after subtracting the explicit one loop SPT
calculation from the data. We show these quantities in Figure 5. The left panel shows that both P̄2loop and P̄ctr,2loop

make roughly a 5% correction to the power around k = 0.2 hMpc�1. Given that Pctr,2loop is uncertain because
we have not used three- and four point function measurements to obtain its amplitude but only have an ansatz, it
is di�cult to imagine that one could be more accurate than about one percent on these scales. The counterterm
is relatively steep, so even though it contributes 5% around k = 0.2 hMpc�1 at k = 0.5 hMpc�1 is makes an
order unity contribution. In the same panel, we also show the e↵ect of the c4sk

4P11 correction, which is at the sub
percent level for the wavenumbers considered here. Note however, that the coe�cient of this term should be fitted
independently, since it has to capture the subleading UV sensitivities in P13 and P15 that we have neglected so far.
We also estimate the three loop counterterm at the basis of our most simple counterterm ansatz, i.e., we consider it
to be given by �k2P̄2loop. This term leads to percent level corrections at k = 0.3 hMpc�1, so we should be worried
about similarly large corrections from the three loop calculation for even larger scales. Finally, we overplot the size
of the stochastic term estimated in [32]. Given that it leads to percent corrections at k = 0.25 hMpc�1, we should
not expect any perturbative approach to match the full power spectrum to a better accuracy than this. Actually, the
perturbative/deterministic calculation performed here should describe the non-linear power from which the stochastic
part has been removed.

As we show in the right panel of Fig. 5, when fitting for c2s, the combination P̄2loop +Pctr,2loop changes c2s by about
50% between k = 0.05 hMpc�1 and k = 0.20 hMpc�1. About half of this change is from the finite part of the two-loop
calculation and half from the counterterms. These two corrections are of the same amplitude at k = 0.18 hMpc�1.

10

P2 loop

cs4k4P

P2 loopctr

-2 cs2 k2 P11

1loop SPT

MC

-k2P2 loop

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

-0.1

0.0

0.1

0.2

k @h Mpc-1D

P i
jêP li

n

P2 loop

cs4k4P

P2 loop,ctr

P2 loop,EFT

-2cs2k2P

P2 loop+P2 loop,ctr

0.05 0.10 0.15 0.20 0.25 0.30 0.35
-1

0

1

2

3

k @h Mpc-1D

-
HP nl
-
P l
in
-
P 1

lo
op
Lê2P

lin
k2
@h-2

M
pc
2 D

z=0

FIG. 5. Left panel: Estimate of the size of the corrections arising from various contributions to the two-loop calculation.
The finite part of the two-loop calculation leads to percent level corrections at k = 0.1 hMpc�1. We also show the corrections
from the square of the speed of sound term k
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, which is suppressed over the range considered here. The size of the three-
loop counterterm can be estimated as O(1) ⇥ k
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2loop

and leads to percent level contributions at k = 0.3 hMpc�1. We also
show the estimate for the stochastic part of the total power spectrum from [32] which leads to percent level corrections at
k = 0.25 hMpc�1. Right panel: Estimator for the leading EFT coe�cient c
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. The model is evaluated for c
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= 0.98 h

�2Mpc2

and the gray band shows the e↵ect of a 10% change in this value. Note that at k = 0.2 hMpc�1 the one-loop counterterm
and the two-loop correction are of the same order. The two-loop term leads to a considerable scale dependence of ĉ

2

s

for
k > 0.07 hMpc�1.

Due to the presence of these corrections, a measurement of c2s without consideration of the two-loop terms is not
possible for wavenumbers exceeding k = 0.07 hMpc�1. Besides the broadband upturn, there are also considerable
wiggles from the Baryon Acoustic Oscillations (BAO) in the finite part of the two loop calculation.

At this point it is perhaps instructive to write an equation relating the change in the inferred value of c2s (�c2s) to
changes or errors in the power spectrum (�P ):

�c2s =
�P

P

1

2k2
⇠ �P/P
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✓
k

0.1 hMpc�1

◆�2

h�2Mpc2 ⇠ �P/P
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✓
k

0.03 hMpc�1

◆�2

h�2Mpc2 . (29)

For values of c2s around 1 h�2Mpc2 and a measurement at k ⇠ 0.1 hMpc�1, an accurate measurement of c2s requires
one to model all other contributions to the power spectrum at the sub-percent level. Besides that, the statistical error
should also be at this level. State of the art simulation codes and reasonable simulation volumes can deliver this level
of accuracy and precision. However, our estimates above show that at this scale, one needs to include the two-loop
terms. If one goes to k ⇠ 0.03 hMpc�1 higher loop contributions are negligible, but as we discuss later the required
10�3 level numerical precision might be challenging.

III. COMPARISON WITH SIMULATIONS

As a benchmark for the performance of the perturbation theory we employ a suite of dark matter only simulations
of the WMAP7 cosmology [34] (⌦m = 0.272, ⌦⇤ = 0.728, ns = 0.967, �8 = 0.81). We have run 16 simulations with
a box length of 1500 h�1Mpc (L simulation) and also one realization of a smaller size, higher resolution box with
500 h�1Mpc box length (M simulation). The simulations are initialized with the second order Lagrangian Perturbation
Theory code 2LPT [35] at redshift zi = 99 and the 10243 particles are subsequently evolved using GADGET2 [36] to
redshift z = 0. For more details on the simulations and some convergence tests see [31].

For the speed of sound in the one-loop EFT calculation we employ the following estimator

ĉ2s = �Pnl � P11 � P1loop

2k2P11
, (30)

where Pnl is the power spectrum from the simulations. In Fig. 6 we show the measurements at redshifts z = 0, 0.5, 1, 2
from our simulations. The data clearly show a scale dependence with significant deviations from the low-k limit at
higher wavenumbers. There are also distinct BAO wiggles in the measurement that have been noted in the literature
[37]. We have corrected the data for 2⇥ 10�4 level deviations in the linear growth factor, that are likely connected to
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Due to the presence of these corrections, a measurement of c2s without consideration of the two-loop terms is not
possible for wavenumbers exceeding k = 0.07 hMpc�1. Besides the broadband upturn, there are also considerable
wiggles from the Baryon Acoustic Oscillations (BAO) in the finite part of the two loop calculation.

At this point it is perhaps instructive to write an equation relating the change in the inferred value of c2s (�c2s) to
changes or errors in the power spectrum (�P ):
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For values of c2s around 1 h�2Mpc2 and a measurement at k ⇠ 0.1 hMpc�1, an accurate measurement of c2s requires
one to model all other contributions to the power spectrum at the sub-percent level. Besides that, the statistical error
should also be at this level. State of the art simulation codes and reasonable simulation volumes can deliver this level
of accuracy and precision. However, our estimates above show that at this scale, one needs to include the two-loop
terms. If one goes to k ⇠ 0.03 hMpc�1 higher loop contributions are negligible, but as we discuss later the required
10�3 level numerical precision might be challenging.

III. COMPARISON WITH SIMULATIONS

As a benchmark for the performance of the perturbation theory we employ a suite of dark matter only simulations
of the WMAP7 cosmology [34] (⌦m = 0.272, ⌦⇤ = 0.728, ns = 0.967, �8 = 0.81). We have run 16 simulations with
a box length of 1500 h�1Mpc (L simulation) and also one realization of a smaller size, higher resolution box with
500 h�1Mpc box length (M simulation). The simulations are initialized with the second order Lagrangian Perturbation
Theory code 2LPT [35] at redshift zi = 99 and the 10243 particles are subsequently evolved using GADGET2 [36] to
redshift z = 0. For more details on the simulations and some convergence tests see [31].

For the speed of sound in the one-loop EFT calculation we employ the following estimator

ĉ2s = �Pnl � P11 � P1loop

2k2P11
, (30)

where Pnl is the power spectrum from the simulations. In Fig. 6 we show the measurements at redshifts z = 0, 0.5, 1, 2
from our simulations. The data clearly show a scale dependence with significant deviations from the low-k limit at
higher wavenumbers. There are also distinct BAO wiggles in the measurement that have been noted in the literature
[37]. We have corrected the data for 2⇥ 10�4 level deviations in the linear growth factor, that are likely connected to
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F. Relative size of the corrections

Before comparing with simulations, we can take our model for the power spectrum and calculate the sizes of the
di↵erent terms. This comparison will allow us to estimate how well we expect our formulae to agree with simulations
and estimate reach of perturbation theory. In particular, now that we have an estimate of the two-loop terms and
their associated counterterms we can ask when they make a di↵erence relative to the one-loop terms and ask over
what range of ks it would be safe to fit for c2s when doing a one-loop calculation only. Our full two-loop EFT power
spectrum is

P = P11 + P1loop + Pctr,1loop + P̄2loop + Pctr,2loop. (27)

We can now compute two quantities:

P

P11
� 1 =

P1loop + Pctr,1loop + P̄2loop + Pctr,2loop

P11

�P � P11 � P1loop

2k2P11
= c2s � P̄2loop + Pctr,2loop

2k2P11
. (28)

The first of these two quantities indicates the size of the various terms as contributions to the power spectrum, the
second indicates the relative correction they would make to a fit of c2s after subtracting the explicit one loop SPT
calculation from the data. We show these quantities in Figure 5. The left panel shows that both P̄2loop and P̄ctr,2loop

make roughly a 5% correction to the power around k = 0.2 hMpc�1. Given that Pctr,2loop is uncertain because
we have not used three- and four point function measurements to obtain its amplitude but only have an ansatz, it
is di�cult to imagine that one could be more accurate than about one percent on these scales. The counterterm
is relatively steep, so even though it contributes 5% around k = 0.2 hMpc�1 at k = 0.5 hMpc�1 is makes an
order unity contribution. In the same panel, we also show the e↵ect of the c4sk

4P11 correction, which is at the sub
percent level for the wavenumbers considered here. Note however, that the coe�cient of this term should be fitted
independently, since it has to capture the subleading UV sensitivities in P13 and P15 that we have neglected so far.
We also estimate the three loop counterterm at the basis of our most simple counterterm ansatz, i.e., we consider it
to be given by �k2P̄2loop. This term leads to percent level corrections at k = 0.3 hMpc�1, so we should be worried
about similarly large corrections from the three loop calculation for even larger scales. Finally, we overplot the size
of the stochastic term estimated in [32]. Given that it leads to percent corrections at k = 0.25 hMpc�1, we should
not expect any perturbative approach to match the full power spectrum to a better accuracy than this. Actually, the
perturbative/deterministic calculation performed here should describe the non-linear power from which the stochastic
part has been removed.

As we show in the right panel of Fig. 5, when fitting for c2s, the combination P̄2loop +Pctr,2loop changes c2s by about
50% between k = 0.05 hMpc�1 and k = 0.20 hMpc�1. About half of this change is from the finite part of the two-loop
calculation and half from the counterterms. These two corrections are of the same amplitude at k = 0.18 hMpc�1.

Baldauf, Mercolli & MZ 1507.02256 



11

P2 loop

cs4k4P

P2 loop,ctr

P2 loop,EFT

-2cs2k2P

P2 loop+P2 loop,ctr

0.05 0.10 0.15 0.20 0.25 0.30 0.35

-0.5

0

0.5

1

1.5

2.

2.5

3.

3.5

k @h Mpc-1D

-
HP nl
-
P l
in
-
P 1

lo
op
Lê2P

lin
k2
@h-2

M
pc
2 D

z=0

0.05 0.10 0.15 0.20 0.25 0.30 0.35
-0.5

0.0

0.5

1.0

1.5

2.0

k @h Mpc-1D

-
HP nl
-
P l
in
-
P 1

lo
op
Lê2P

lin
k2
@h-2

M
pc
2 D

z=0.5

0.05 0.10 0.15 0.20 0.25 0.30 0.35
-0.5

0.0

0.5

1.0

k @h Mpc-1D

-
HP nl
-
P l
in
-
P 1

lo
op
Lê2P

lin
k2
@h-2

M
pc
2 D

z=1
0.05 0.10 0.15 0.20 0.25 0.30 0.35

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

k @h Mpc-1D

-
HP nl
-
P l
in
-
P 1

lo
op
Lê2P

lin
k2
@h-2

M
pc
2 D

z=2

FIG. 6. One loop c

2

s

estimator at z = 0, 0.5, 1, 2 from top left to bottom right before IR resummation. At all redshifts, we
see clear evidence for a running of c2

s

that is described by the scale dependence of the two loop correction and the two loop
counterterm.

the leading order cosmic variance, by actually considering the ratio of non-linear power spectrum and linear (initial)
power spectrum measured in the simulations. The one-loop EFT model (horizontal magenta dashed line) fails to
describe the data for k > 0.07 hMpc�1, but the two-loop corrections can explain the residual scale dependence. We
find c2s ⇡ 0.98 h�2Mpc2 and interpret the di↵erence from previous measurements c2s ⇡ 1.6 h�2Mpc2 [16] extracted
from the k = 0.15� 0.25 hMpc�1 range as resulting from the two loop contributions. It is also worth noting that the
two loop calculation is already doing a very good job at tracking the BAO oscillations, at least for k < 0.2 hMpc�1.
The calculation based on the UV-limits assumes a time dependence of c2s that matches the one of the SPT term
that it is regularizing, i.e., D2(a). We are using this time dependence to scale our z = 0 fit to higher redshifts
and find very good performance both for the small wavenumber behaviour as well as the scale dependence at higher
wavenumbers. All of the redshifts show slightly low datapoints at k = 0.03 hMpc�1 and k = 0.045 hMpc�1, that
spoil a nice asymptotic behaviour at low wavenumbers that one would expect in the EFT. As we describe in App. B,
this systematic e↵ect goes away if the theory is calculated on the simulation grid, e↵ectively using the same modes
that are present in the simulations.
The discussion of the relative di↵erence between simulation and analytic calculation for the power spectrum itself

will be deferred until we discuss the IR-resummation below in Sec. III B, but the impatient reader might want to look
at Fig. 10. The two-loop calculation agrees with the data at the sub-percent level all the way to k = 0.3 hMpc�1 at
z = 0.

A. Time Derivative and momentum correlators at two loops

So far we have concentrated at a single observable, the density power spectrum, we would now like to extend
the calculation to momentum statistics. This extension is motivated by the fact that the momentum statistics are
sensitive to the time dependence of the speed of sound and more sensitive to loop corrections than the density power
spectrum itself. We consider momentum µ = �r · [(1 + �)v] instead of velocity, since the latter is only defined at the
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tion needs to start from third order, i.e., ⌃6.
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(41)

The e↵ects of IR resummation are highlighted in Fig. 9. Performing the IR resummation on the bare one-loop
calculation leads to considerable changes to the power spectrum. Below k ⇡ 0.2 hMpc�1, the not IR-resummed
two-loop calculation performs almost as well as the IR-resummed one loop calculation. The IR-resummation of the
two-loop calculation only matters at the percent level for k > 0.2 hMpc�1.

As we have seen above in Fig. 6, the two-loop calculation is tracking part of the BAO wiggles in the power spectrum
residuals after the one-loop result has been removed. Let us now study its performance at higher wavenumbers and
in the power spectrum itself. In Fig. 10 we show the performance of the IR-resummed and not IR-resummed one-
and two-loop EFT calculations with respect to the non-linear power spectrum extracted from the N -body simulation.
Let us first discuss the broadband performance. At redshift z = 0 the one loop calculation extends the range of
validity5 of linear theory from k ⇡ 0.05 hMpc�1 to k ⇡ 0.1 hMpc�1. This is significantly less, than usually considered
for the range of validity of the EFT at redshift z = 0 and arises from the fact that we have fixed the leading order
counterterm in a way that is compatible with the largest available scales. We then use this parameter to calculate
the two loop counterterm. This term, together with the finite part of the regularized two-loop calculation allows us

5 For the sake of definiteness we will commonly consider 1% deviations from the theory as the threshold for the range of validity. Many
applications will require tighter errorbars on large scales to fix the amplitude. On smaller scales we will anyways su↵er from baryonic
e↵ects and significant covariance, such that less restrictive requirements could be employed.
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linear and one-loop corrections and the lower panel after subtraction of the regularized two-loop contribution P
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(which are
shown as solid and dashed lines in the upper panel). Right panel: Comparison of the c
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estimator based on an analytical
one-loop calculation and the one-loop calculation performed on the simulation IC grid. Once corrected for 3 ⇥ 104 growth
factor normalization the low-k limit of the estimator in the simulations indeed asymptotes to a constant.

The SPT contributions in these expression are IR sensitive, since the cancellation of IR modes in 2P13 + P22 or
its two-loop equivalent are not happening. When subtracting the one-loop SPT contribution from the propagator
measured in simulations we address this issue by evaluating perturbation theory on the initial condition grid employed
for the simulations using a technique similar to [40]. Thus, we are using the same IR modes that a↵ect the non-linear
dynamics in the simulation, thus directly addressing the IR sensitivity. The propagator based estimator projects out
all the terms from the field that correlate with the linear field and thus provides an alternative and in some sense
cleaner measurement of corrections that have the form of the leading order EFT counterterm, which could be masked
by other contributions in the auto-power spectrum.

We show the measurements of c2s based on the propagator in Fig. 12 at one- and two-loop level. The upper panel
shows c2s before the two-loop contribution has been subtracted. Once corrected for 10�4 level o↵sets in the linear
growth factor,6 that are probably related to the timestepping in GADGET and that lead to an upturn or downturn
of the data points in the plot, we see that the data asymptote to a constant on large scales and then decay on
smaller scales. The shape of this decay is however captured by the scale dependence of P̄15. Another remarkable
observation is that the measured value of c2s depends very strongly on the PMGRID parameter in GADGET, leading
to a shift of �c2s ⇡ 0.8 h�2Mpc2. We had seen a similar sensitivity already for the Lagrangian EFT coe�cient of
the displacement field in [31]. Based on this study, we are inclined to favor the results of the PMGRID = 2Np case.
For another observation of this sensitivity in the power spectrum see [41]. Further evidence for the trustworthiness
of this case comes from the fact that it agrees with the results from the higher resolution box, the M simulation. In
a second step we now remove the scale dependence of P̄15 and see in the lower panel, that the estimated c2s is flat up
to k ⇡ 0.2 hMpc�1. There is clearly more need for convergence studies of the propagator and we certainly do not
want to overinterpret a result that is so sensitive on numerical parameters of simulations. We conclude however, that
there is evidence for a non-zero speed of sound correction after one loop SPT has been subtracted. The inferred value
c2s = 1.15 hMpc�1 roughly agrees with the value employed for the equal time correlators in the main text. Had we
subtracted the explicit low-k limit of P15 (not P̄15, i.e. before regularization), the estimated c2s would have changed
by �c2s = �2.58 hMpc�1 and thus yielded a non-zero, negative c2s . The explicit corrections from three loops are even
higher [7].

In the right panel of Fig. 12 we also compare the grid based calculation for the c2s constraint from the auto power
spectrum with the analytical calculation. For the latter, we saw in the main text in Fig. 6 that the data points for ĉ2s at
k < 0.05 hMpc�1 are systematically low. This problem vanishes once the theory is calculated on the simulation grid.
We see that the c2s estimator now asymptotes to a constant horizontal line on large scales, as we would expect it to

6 We have independent evidence for such an error at this level from comparing power spectra for our fiducial parameter settings with a
simulation with smaller timesteps.
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The SPT contributions in these expression are IR sensitive, since the cancellation of IR modes in 2P13 + P22 or
its two-loop equivalent are not happening. When subtracting the one-loop SPT contribution from the propagator
measured in simulations we address this issue by evaluating perturbation theory on the initial condition grid employed
for the simulations using a technique similar to [40]. Thus, we are using the same IR modes that a↵ect the non-linear
dynamics in the simulation, thus directly addressing the IR sensitivity. The propagator based estimator projects out
all the terms from the field that correlate with the linear field and thus provides an alternative and in some sense
cleaner measurement of corrections that have the form of the leading order EFT counterterm, which could be masked
by other contributions in the auto-power spectrum.

We show the measurements of c2s based on the propagator in Fig. 12 at one- and two-loop level. The upper panel
shows c2s before the two-loop contribution has been subtracted. Once corrected for 10�4 level o↵sets in the linear
growth factor,6 that are probably related to the timestepping in GADGET and that lead to an upturn or downturn
of the data points in the plot, we see that the data asymptote to a constant on large scales and then decay on
smaller scales. The shape of this decay is however captured by the scale dependence of P̄15. Another remarkable
observation is that the measured value of c2s depends very strongly on the PMGRID parameter in GADGET, leading
to a shift of �c2s ⇡ 0.8 h�2Mpc2. We had seen a similar sensitivity already for the Lagrangian EFT coe�cient of
the displacement field in [31]. Based on this study, we are inclined to favor the results of the PMGRID = 2Np case.
For another observation of this sensitivity in the power spectrum see [41]. Further evidence for the trustworthiness
of this case comes from the fact that it agrees with the results from the higher resolution box, the M simulation. In
a second step we now remove the scale dependence of P̄15 and see in the lower panel, that the estimated c2s is flat up
to k ⇡ 0.2 hMpc�1. There is clearly more need for convergence studies of the propagator and we certainly do not
want to overinterpret a result that is so sensitive on numerical parameters of simulations. We conclude however, that
there is evidence for a non-zero speed of sound correction after one loop SPT has been subtracted. The inferred value
c2s = 1.15 hMpc�1 roughly agrees with the value employed for the equal time correlators in the main text. Had we
subtracted the explicit low-k limit of P15 (not P̄15, i.e. before regularization), the estimated c2s would have changed
by �c2s = �2.58 hMpc�1 and thus yielded a non-zero, negative c2s . The explicit corrections from three loops are even
higher [7].

In the right panel of Fig. 12 we also compare the grid based calculation for the c2s constraint from the auto power
spectrum with the analytical calculation. For the latter, we saw in the main text in Fig. 6 that the data points for ĉ2s at
k < 0.05 hMpc�1 are systematically low. This problem vanishes once the theory is calculated on the simulation grid.
We see that the c2s estimator now asymptotes to a constant horizontal line on large scales, as we would expect it to

6 We have independent evidence for such an error at this level from comparing power spectra for our fiducial parameter settings with a
simulation with smaller timesteps.
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for. The dashed line shows the e↵ect of a relative error of the linear growth factor of 2 ⇥ 10�4 that both statistics have been
corrected for.

single-hard double-hard
Eq. x(n) x(�3/2) Eq. x(n) x(�3/2)

P

15

(14) n+1 -1/2 (C8) 2n+4 1

P

24

(15) n+1 -1/2 (C4) 3n+2 -5/2

(C6) 2n-1 -4

P

33�I

(C1) 2n-1 -4 (C2) 3n+2 -5/2

P

33�II

(16) n+1 -1/2 (13) 2(n+1) -2

TABLE I. Table of the two loop limits, references to the equations where they are discussed, the power of the cuto↵ dependence
⇤x for a power law power spectrum P (k) / k

n with general power law slope n and for n = �3/2. For the single hard limit the
slope gives the power of the hard integral ignoring the remaining finite integral, while for the double hard integrals we consider
both momenta in the hard integrals to be of the same order. The choice n = �3/2 is motivated by the slope of our ⇤CDM
power spectrum at k ⇡ 0.1 hMpc�1.

based on the scale dependence of the two-loop corrections shown in Fig. 5. Again, the value of this asymptotic constant
depends strongly on the PMGRID parameter choice, now leading to a �c2s = 0.3 h�2Mpc2 di↵erence between the
two cases. Note however that they agree at higher wavenumbers. Thus, to the extend that our ansatz is trustworthy,
a model what matches at these scales would prefer the PMGRID = 2Np case at lower wavenumbers.

There is also a slight disagreement between the propagator and power spectrum estimates for the favored PMGRID=
2Np case. The power spectrum method of this case would indicate a c2s = 1.05 h�2Mpc2. In Fig. 13 we show both
the propagator and the power spectrum estimator after the finite two loop terms have been subtracted out. Except
for a �c2s ⇡ 0.1 h�2Mpc2 o↵set both estimators are flat and consistent up to k ⇡ 0.15 hMpc�1, where higher order
terms, for instance the two loop counterterms, start to matter.

Appendix C: Limits of the two loop terms

In the main text, we have concentrated our discussion on the terms that we consider relevant for the leading UV
sensitivity and the corresponding counterterms. Let us, for the sake of completeness, discuss the remaining hard limits
in this appendix. An overview of all the single- and double-hard limits of the two loop calculation is given in Tab. I.
In this table we also give the power of the cuto↵ dependence of the remaining integrals if the initial power spectrum
is of power law form P (k) / kn. We evaluate the cuto↵ dependence for n = �3/2, the slope of our power spectrum
at k = 0.1 hMpc�1. For the single-hard limits we immediately see that the terms that we found to dominate the
shell behaviour have the most shallow decay in the UV, and are thus the most sensitive to the change of the power
spectrum at high wavenumbers. For the double hard limits, the limit of P15 is still growing for n = �3/2 but turns
around at for n = �2 at k ⇡ 0.3, so it will still converge based on the high-k slope of our initial power spectrum. Yet,
it is immediately clear why this integral should be absorbed into the counterterm. The subleading k4P UV-sensitivity
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Figure 15. Transfer function a1 of the 1tLPT model. It corresponds to a1 = P1⇥nl
P11

' 1 + ↵k

2 + P13
P11

,
which indicates that the 1tLPT power spectrum effectively includes the P13 term, even though �

(3)

is not explicitly included in the 1tLPT model.

P11 + P13 + ↵k

2
P11 + ... . Here, the term P13 is implicitly included in the 1tLPT power

spectrum, even though evaluating the 1tLPT displacement did not require computing �

(3).
In turn, the LPT and EFT can predict what these transfer functions should be, as

shown in Fig. 15. We see that the 3LPT model for a1 overpredicts its amplitude due to the
UV sensitivity of P13, whereas the 3EFT prediction, taking into account the counterterm
associated with ↵, is accurate to 1% even beyond k = 0.1hMpc�1.

This also generalizes to higher order: as soon as the term a

i

�

(i) is included, the LPT
contributions P

ij

to the non-linear power spectrum for all j are automatically included. This
is illustrated in Tab. 1.

a1 a2 a3 a4 a5

tree 11
1-loop 13 22
2-loop 15 24 33
3-loop 17 26 35 44
4-loop 19 28 37 46 55

Table 1. List of contributions to the LPT power spectrum at tree order and various loop orders. The
columns collect the terms that are effectively included by the transfer function (a1, a2, a3, a4 and a5

respectively). For example, this shows that 3tLPT contains all of the 2-loop terms, including P15 and
P24, even though �4 and �5 are not computed explicitly in �3tLPT

.

In practice, we fit for the free coefficients a

i

(k) for each k-bin independently, by mini-
mizing P

error

(k) = h|�
error

|2i = h|�
nl

�
P

i

a

i

�

i

|2i. If we interpret h�
a

|�
b

i ⌘ h�?

a

�

b

i as a scalar
product and h|�

a

|2i as a squared norm as before, we see that minimizing the norm of the
displacement error �

error

(i.e. minimizing P

error

) amounts to making the displacement error
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Figure 14. Comparison between the error power spectra for the artificial model �

model

(k) =q
Pnl(k)
P11(k)�

(1)(k) and �

3LPT

. Even though the former gives exactly the right non-linear power spectrum,
its error power spectrum is much larger, meaning that it is a wrong model for the displacement.

we are guaranteed to choose the value of ↵ that provides the best displacement field possible,
which prevents the risk of overfitting.

In practice though, because our measurement of ↵ is largely limited by systematic er-
rors in our N -body simulation suite, the difference between the value of ↵ obtained from
minimizing the error power spectrum and from fitting to the non-linear power spectrum is
small compared to the final uncertainty on ↵. This was not a priori obvious, and shows how
sensitive this measurement is to systematic errors on the largest scales of the simulation.

4 Transfer functions and ‘tLPT’

4.1 Optimal linear model from LPT – including higher-loop terms

In the previous section, we measured the EFT coefficient ↵, and compared the EFT model to
the various nLPT models. We found that the EFT significantly increases the range of validity
of perturbation theory. But we also wish to understand how close to optimal the EFT model
is. To do so, we compare it to the “ntLPT” models (for “LPT with transfer functions”), i.e.
the LPT models for which the LPT displacements are multiplied by free functions of the
modulus k ⌘ |k| of the wavenumber (the “transfer functions”, see also [16]):

�

ntLPT

(k) = a1(k)�(1)(k) + ... + a

n

(k)�(n)(k). (4.1)

For each of these models (LPT, EFT, tLPT), we compute the displacement error �

error

⌘
�

nl

��

model

. The transfer functions a

i

(k) of the tLPT models are chosen so as to minimize the
error power spectrum P

error

for each k-bin. Notice that the transfer functions are not chosen
so as to match the non-linear power spectrum. The tLPT models correspond to a lower bound
on P

error

, and thus allow to assess how close to optimal the LPT and EFT models are.
Besides, the transfer functions allow to effectively include certain higher order LPT and

EFT terms without having to compute them explicitly. For example, for the 1tLPT model
�1tLPT

= a1�
(1), the result of minimizing P

error

yields a1 = P1⇥nl

P11
, so that P1tLPT

=
P

2
1⇥nl

P11
'
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determined by the perturbative solution (i.e. ultimately by the linear displacement field) on a
realization by realization basis. The terms in a

ct

have the correct spatial structure to absorb
potential divergencies encountered in the loop calculations.

On the other hand a

stoch

is a stochastic contribution due to the small-scale detail of the
particular realization considered. Its exact Fourier amplitude and phase cannot be predicted,
but at the order considered in this paper, only the power spectrum of a

stoch

will be relevant,
and it will be regarded as realization-independent.

In [10] the form of the counterterms in the r.h.s. of Eq (2.15) was motivated by con-
sidering the theory for the displacements once smoothed on a sufficiently large scale so that
perturbation theory is valid. The equation of motion in the EFT can be interpreted as the
equation of motion of the center of mass of a set of point-like particles, each following the
LPT equation of motion (2.2). Regardless of the physical origin of these terms, the response
terms are expanded in powers of the displacement and its derivatives, and to lowest order,
the resulting expression for the scalar displacement is very simple [10]:

�1�loop EFT

=
�
1 + ↵k

2
�
�

(1) + �

(2) + �

(3) + �

stoch

, (2.16)

This equation differs from its LPT analog only by the addition of the EFT counterterm
↵k

2
�

(1) (where ↵ is some unknown function of time), and the stochastic term �

stoch

. In
particular, the corresponding 1-loop power spectrum is given by:

P1�loop EFT

= P1�loop LPT

+ 2↵k

2
P11 (2.17)

Indeed, the power spectrum of the stochastic term is expected to be subdominant compared
to the EFT term ↵k

2
P11, as shown in Fig. 3 and explained in more details in the next section.

As we shall show shortly, the EFT counterterm has the right scale-dependence to correct the
mistake on P13 due to high-k modes, shown in Eq. (2.24). This way, the EFT term can absorb
the UV mistake in the LPT power spectrum. Furthermore, the coefficient ↵ will compensate
the cutoff k

max

in the loop integrals, resulting in a cutoff-independent power spectrum.

Note that we can also understand ↵ as a regulator of loop corrections to the displacement
field itself (rather than loop corrections to the displacement power spectrum). Namely we
can close one loop in the third order displacement field (i.e. contract two of the three linear
density fields) to yield a modified linear displacement field

�

(3)(k) � �0(k)

Z
d3

p

(2⇡)2
L3(p, �p,k)P

lin

(p) = �

(1)(k)
P13(k)

P11(k)
(2.18)

The loop is the same one as in P13, i.e. it scales as k

2 for large loop momenta. It can
be regularized by ↵k

2. This also makes clear that the regularization of a n-th order field
(here �

(3)) requires the leading order counterterm to be a n � 2-th order field (here �

(1)), or
equivalently that the lowest counterterm counts as a second order field in the power counting.

In what follows, we call “EFT” or “3EFT” the model �

3EFT

= (1+↵k

2)�(1) +�

(2) +�

(3),
and we shall compare it to the “nLPT” models in terms of agreement with the simulation.

2.3 Estimates for the sizes of non-linear corrections: EdS scalings vs. ⇤CDM

When performing a perturbative calculation, it is useful to know how many orders are required
to reach a desired accuracy level. In the case of the EFT this is also necessary in order
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Figure 14. Comparison between the error power spectra for the artificial model �

model

(k) =q
Pnl(k)
P11(k)�

(1)(k) and �

3LPT

. Even though the former gives exactly the right non-linear power spectrum,
its error power spectrum is much larger, meaning that it is a wrong model for the displacement.

we are guaranteed to choose the value of ↵ that provides the best displacement field possible,
which prevents the risk of overfitting.

In practice though, because our measurement of ↵ is largely limited by systematic er-
rors in our N -body simulation suite, the difference between the value of ↵ obtained from
minimizing the error power spectrum and from fitting to the non-linear power spectrum is
small compared to the final uncertainty on ↵. This was not a priori obvious, and shows how
sensitive this measurement is to systematic errors on the largest scales of the simulation.

4 Transfer functions and ‘tLPT’

4.1 Optimal linear model from LPT – including higher-loop terms

In the previous section, we measured the EFT coefficient ↵, and compared the EFT model to
the various nLPT models. We found that the EFT significantly increases the range of validity
of perturbation theory. But we also wish to understand how close to optimal the EFT model
is. To do so, we compare it to the “ntLPT” models (for “LPT with transfer functions”), i.e.
the LPT models for which the LPT displacements are multiplied by free functions of the
modulus k ⌘ |k| of the wavenumber (the “transfer functions”, see also [16]):

�

ntLPT

(k) = a1(k)�(1)(k) + ... + a

n

(k)�(n)(k). (4.1)

For each of these models (LPT, EFT, tLPT), we compute the displacement error �

error

⌘
�

nl

��

model

. The transfer functions a

i

(k) of the tLPT models are chosen so as to minimize the
error power spectrum P

error

for each k-bin. Notice that the transfer functions are not chosen
so as to match the non-linear power spectrum. The tLPT models correspond to a lower bound
on P

error

, and thus allow to assess how close to optimal the LPT and EFT models are.
Besides, the transfer functions allow to effectively include certain higher order LPT and

EFT terms without having to compute them explicitly. For example, for the 1tLPT model
�1tLPT

= a1�
(1), the result of minimizing P

error

yields a1 = P1⇥nl

P11
, so that P1tLPT

=
P

2
1⇥nl

P11
'
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Figure 20. Comparison between 1-loop LPT, EFT and tLPT, in terms of their agreement with
simulation for the power spectrum (left panel), and the displacement field itself (right panel). The
EFT improves on the LPT, and is close to tLPT, with the latter performing slightly better on the
power spectrum. This shows that the 1-loop EFT cannot be outperformed by any expansion of the
form a1(k)�(1)(k) + a2(k)�(2)(k) + a3(k)�(3)(k) by more than a factor of two in the wavenumber up
to which we can trust the theory at percent level.

conserve mass and momentum and thus need to start as k

2
�

(1) [6, 26].

4.3 Optimality of the EFT at 1-loop

As explained earlier, we compare the EFT model to the tLPT models to assess how close
to optimal the EFT model is. In terms of the error power spectrum, which quantifies the
agreement with simulation at the level of the displacement field, the 1-loop EFT and tLPT
both have P

error

6 1%P

nl

up to k ' 0.2hMpc�1. This shows that the EFT displacement
is very close to the 3tLPT displacement, showing that the EFT model is close to optimal
at 1-loop order: no expansion of the form a1(k)�(1)(k) + a2(k)�(2)(k) + a3(k)�(3)(k) can
significantly outperform it. In terms of the non-linear power spectrum, the 1-loop EFT
provides a 1% fit to the power spectrum up to k & 0.1hMpc�1, compared to k ' 0.2hMpc�1

for the 3tLPT model. One might be able to achieve this factor of two extension in the range
over which the power spectrum can be described at the 1% level using 2-loop EFT.

5 The stochastic term

5.1 A floor in the error power spectrum

Detection of the stochastic term We wish to understand the error power spectra P

tLPT

error

for the various tLPT models. We make use of the orthogonal basis �

(i)? defined above. In
this basis, the transfer functions a

?
i

(k) are independent of the tLPT order used (i.e. a

?
1 (k)

is the same for 1tLPT, 2tLPT, etc). Since �

4tLPT

is our best model for the true �

nl

, we will
write:

�

nl

' a

?
1 �

(1)? + a

?
2 �

(2)? + a

?
3 �

(3)? + a

?
4 �

(4)? + �

stoch

(5.1)

Thus we can estimate the displacement errors for 1tLPT, 2tLPT and 3tLPT as follows:

�

1tLPT

error

' a

?
2 �

(2)? + a

?
3 �

(3)? + a

?
4 �

(4)? + �

stoch

�

2tLPT

error

' a

?
3 �

(3)? + a

?
4 �

(4)? + �

stoch

�

3tLPT

error

' a

?
4 �

(4)? + �

stoch

(5.2)
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FIG. 1. Diagrams for the tree level, one- and two-loop expressions of the SPT power spectrum.

The case of the one loop bispectrum has already been considered in the literature [18, 19]. In that case the second
order counterterms are needed. This introduces three additional parameters for the spatial structure of ⌧det✓ . One can
write:

⌧det✓

��
NLO

= �d24[�(1) + �(2)] � e14�2(1) � e24(sij(1)s
ij
(1)) � e3@is

ij
(1)@j�(1), (5)

with

sij =

✓
@i@j � 1

3
�(K)
ij 4

◆
�̄. (6)

In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,

� = �(1) + �(2) + �(3) + �(4) + �(5) + · · · (7)

where �(n) depends on the initial conditions to the n-th power and we have only written terms relevant for the two loop
calculation of the two point function. When computing the power spectrum, one considers the averages of h�(n)�(m)i.
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Figure 19. Left panel: Transfer function a

?
1 of the 1tLPT model. Adding P15 modifies the value

of ↵, as expected, and improves the agreement. Right panel: Transfer function a

?
2 of the 1tLPT

model. We clearly see a percent level deviation on the largest scales, that is accounted for by adding
P24/P22/2 to the model for this term. The latter however over predicts the enhancement in the mildly
non-linear regime, which is in turn fixed by the EFT counter terms E2,i. As we pointed out before,
they lead to k

0 and k

2 corrections through P2̃2/P22.

The EFT predicts the first order orthogonal transfer function as follows:

a

?
1 ⌘ P1⇥nl

P11
' 1 +

1

2

P13

P11
+ ↵k

2

' 1 +
1

2

P13

P11
+

1

2

P15

P11
+ ↵

0
k

2
.

(4.5)

Here, the first line corresponds to the 1-loop EFT prediction for a

?
1 , where ↵ is the EFT co-

efficient measured above. The second line corresponds to the 2-loop prediction (see Fig. 19).
Since the LPT terms such as P13 and P15 are cutoff-dependent and have potentially wrong UV
contributions, they are associated with a counterterm. Thus ↵ and ↵

0 differ by the k

2 coeffi-
cient of 1

2P15/P11 which is approximately 3 h

�2Mpc2 for a cutoff of ⇤ = 0.6hMpc�1. Beyond
that, 1

2P15/P11 has a k

4 contribution which is cutoff dependent, and should be corrected by a
counterterm of the form �k

4. However, we found that including such a counterterm does not
improve the prediction for a

?
1 , and we therefore do not include it in the following discussion.

Similarly, the deviations of the transfer function for the second order displacement can
be modeled by a combination of the next-to-leading order LPT term and the corresponding
EFT counterterms

a

?
2 = 1 +

1

2

P24

P22
+

1

2

P2̃2

P22
. (4.6)

Note that P24/P22 starts as k

0 (actually predicting deviations of 1% on large scales at z = 0).
This means that transfer function on �2 can deviate from unity even on very large scales. The
cutoff dependence of P24 needs to be captured by the corresponding counterterms - P2̃2/P22 is
the sum of three next-to-leading order counterterms with their free coefficients. As discussed
in Sec. 2.5, they scale as k

0 and k

2 for small wavenumbers. We show the EFT description of
the second order transfer function in Fig. 19. P24 captures the large scale offset quite well,
but overpredicts the scale dependence of the transfer function. This mistake can be corrected
by adding the quadratic counter terms in the form of a k

0 term and a k

2 term with free
coefficients.
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Figure 12. Left panel: Relative difference between the non-linear power spectrum from the simulation
and from LPT (Zel’dovich approximation, 1 and 2-loop) and EFT (1-loop). The 1% error domain is
the shaded grey band. The maximum wave vector with accuracy of 1% is improved by a factor of
three from 1-loop LPT to 1-loop EFT, from 0.05 h/Mpc to 0.15 h/Mpc. The 2-loop LPT worsens
the agreement to simulation, compared to 1-loop LPT. The shaded magenta region indicates the
scatter we would get due to cosmic variance without the LPT calculation on the simulation grid:
this measurement has negligible cosmic variance. Right panel: Power spectrum of the error on the
displacement field. Adding the second and third order to the first order displacement improves the
agreement at the level of the displacement field on large scales (k . 0.1hMpc�1). Including the EFT
counterterm at 1-loop further improves the agreement, by correcting the UV mistake in �3. However,
going up to fifth order in LPT worsens the agreement, as expected for an asymptotic series, because
of the UV mistake that is not corrected by EFT counterterms.

3.4 Relative importance of the various EFT terms

As Fig. 12 shows, the EFT provides a good fit not only to the non-linear power spectrum,
but also to the displacement field itself. However, in the case of the EFT power spectrum,
the contribution from �

(2) (i.e. the term P22) is negligible compared to the contribution from
�

(3) (i.e. the term P13). One might therefore wonder about the relative importance of the
non-linear terms �

(2), �

(3), ↵k

2
�

(1) present in the EFT model: do they contribute equally?
Is the second order displacement �

(2) helping at all in the agreement with simulation?
The answer to these questions can be visualized as follows. The displacement fields

�

nl

, �

(1), �

(2), �

(3) are functions of the wave vector k, i.e., they are defined for each of the
N

modes

modes in our simulation box. They can thus be understood as very high dimensional
vectors (�(k

i

))
i=1,...,N

modes

. We can then interpret h�
a

|�
b

i ⌘ h�?

a

�

b

i as a scalar product and
h|�

a

|2i as the corresponding squared norm on this vector space. Intuitively, with this scalar
product, two displacement fields are aligned if they are perfectly correlated, and orthogonal if
they are completely uncorrelated. This allows a graphical representation of the displacement
fields on the basis

�
�

(1)
, �

(2)
, �

(3)
�

of the LPT terms. This basis is not orthogonal (e.g.
h�(1)|�(3)i 6= 0), so we shall instead use the orthonormal basis

�
�

(1)?
, �

(2)?
, �

(3)?�
, deduced

from
�
�

(1)
, �

(2)
, �

(3)
�

through the Gram-Schmidt orthogonalization process. Fig. 13 shows
the graphical representation of the EFT terms as well as the non-linear displacement. Fig. 13
makes it visible that the contribution of �

(2) to reducing the error �

error

is more important
than that of �

(3), as one would expect for a well-behaved expansion. It also shows that even
though �

(3) is a smaller term than �

(2) (i.e. ||�(3)|| =
p

P33 <

p
P22 = ||�(2)||), it brings a

larger contribution to the non-linear power spectrum, because it is more “aligned” with �

(1)
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Figure 12. Left panel: Relative difference between the non-linear power spectrum from the simulation
and from LPT (Zel’dovich approximation, 1 and 2-loop) and EFT (1-loop). The 1% error domain is
the shaded grey band. The maximum wave vector with accuracy of 1% is improved by a factor of
three from 1-loop LPT to 1-loop EFT, from 0.05 h/Mpc to 0.15 h/Mpc. The 2-loop LPT worsens
the agreement to simulation, compared to 1-loop LPT. The shaded magenta region indicates the
scatter we would get due to cosmic variance without the LPT calculation on the simulation grid:
this measurement has negligible cosmic variance. Right panel: Power spectrum of the error on the
displacement field. Adding the second and third order to the first order displacement improves the
agreement at the level of the displacement field on large scales (k . 0.1hMpc�1). Including the EFT
counterterm at 1-loop further improves the agreement, by correcting the UV mistake in �3. However,
going up to fifth order in LPT worsens the agreement, as expected for an asymptotic series, because
of the UV mistake that is not corrected by EFT counterterms.
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the graphical representation of the EFT terms as well as the non-linear displacement. Fig. 13
makes it visible that the contribution of �

(2) to reducing the error �

error

is more important
than that of �

(3), as one would expect for a well-behaved expansion. It also shows that even
though �

(3) is a smaller term than �
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Figure 20. Comparison between 1-loop LPT, EFT and tLPT, in terms of their agreement with
simulation for the power spectrum (left panel), and the displacement field itself (right panel). The
EFT improves on the LPT, and is close to tLPT, with the latter performing slightly better on the
power spectrum. This shows that the 1-loop EFT cannot be outperformed by any expansion of the
form a1(k)�(1)(k) + a2(k)�(2)(k) + a3(k)�(3)(k) by more than a factor of two in the wavenumber up
to which we can trust the theory at percent level.

conserve mass and momentum and thus need to start as k

2
�

(1) [6, 26].

4.3 Optimality of the EFT at 1-loop

As explained earlier, we compare the EFT model to the tLPT models to assess how close
to optimal the EFT model is. In terms of the error power spectrum, which quantifies the
agreement with simulation at the level of the displacement field, the 1-loop EFT and tLPT
both have P

error

6 1%P

nl

up to k ' 0.2hMpc�1. This shows that the EFT displacement
is very close to the 3tLPT displacement, showing that the EFT model is close to optimal
at 1-loop order: no expansion of the form a1(k)�(1)(k) + a2(k)�(2)(k) + a3(k)�(3)(k) can
significantly outperform it. In terms of the non-linear power spectrum, the 1-loop EFT
provides a 1% fit to the power spectrum up to k & 0.1hMpc�1, compared to k ' 0.2hMpc�1

for the 3tLPT model. One might be able to achieve this factor of two extension in the range
over which the power spectrum can be described at the 1% level using 2-loop EFT.

5 The stochastic term

5.1 A floor in the error power spectrum

Detection of the stochastic term We wish to understand the error power spectra P

tLPT

error

for the various tLPT models. We make use of the orthogonal basis �

(i)? defined above. In
this basis, the transfer functions a

?
i

(k) are independent of the tLPT order used (i.e. a

?
1 (k)

is the same for 1tLPT, 2tLPT, etc). Since �

4tLPT

is our best model for the true �

nl

, we will
write:

�

nl

' a

?
1 �

(1)? + a

?
2 �

(2)? + a

?
3 �

(3)? + a

?
4 �

(4)? + �

stoch

(5.1)

Thus we can estimate the displacement errors for 1tLPT, 2tLPT and 3tLPT as follows:

�

1tLPT

error

' a

?
2 �

(2)? + a

?
3 �

(3)? + a

?
4 �

(4)? + �

stoch

�

2tLPT

error

' a

?
3 �

(3)? + a

?
4 �

(4)? + �

stoch

�

3tLPT

error

' a

?
4 �

(4)? + �

stoch

(5.2)
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Figure 21. Error power spectrum for the various tLPT models (solid lines), compared to the naïve
expectation of equations (5.1) and (5.3) (dashed lines), relative to the non-linear power spectrum.
The naïve expectation underestimates the measurement, which indicates the presence and the exact
size of the stochastic term P

stoch

.

For a well-behaved perturbative series, one would assume that the various terms on the
r.h.s. of (5.1) are ranked in decreasing order. Keeping only the dominant term and neglecting
the stochastic term then leads to the following estimate for P

error

for the tLPT models:

P

1tLPT

error

'
⇥
a

?
2

⇤2
P2?2?

P

2tLPT

error

'
⇥
a

?
3

⇤2
P3?3?

P

3tLPT

error

'
⇥
a

?
4

⇤2
P4?4?

(5.3)

These estimates are shown in Fig. 21 (dashed lines). The fact that they respect a

2
2P

ortho

22 >

a

2
3P

ortho

33 > a

2
4P

ortho

44 shows that this expansion is well defined: higher order terms are indeed
smaller. However, Fig. 21 also shows that these estimates for the P

ntLPT

error

are much lower than
the measured error power spectra (solid lines). There is clearly a floor in the measured error
power spectra, which we associate with the stochastic displacement �

stock

. Fig. 21 shows that
the correct ranking of the terms in the 4tLPT model on large scales (k < 0.1hMpc�1) is not
that of (5.1), but instead

�

nl

= a

?
1 �

(1)? + a

?
2 �

(2)? + a

?
3 �

(3)? + �

stoch

+ a

?
4 �

(4)?
, (5.4)

i.e., the stochastic term is not negligible and even exceeds the amplitude of the fourth order
displacement. These findings indicate that the error power spectra should scale according to:

P

1tLPT

error

'
⇥
a

?
2

⇤2
P2?2? +

⇥
a

?
3

⇤2
P3?3? + P

stoch

P

2tLPT

error

'
⇥
a

?
3

⇤2
P3?3? + P

stoch

P

3tLPT

error

' P

stoch

(5.5)

Indeed we can define a unique function of k, the stochastic power spectrum, for which all
three of the above equations are satisfied. We show the stochastic power spectrum from the
L simulation as the solid black line in Fig. 22.
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Figure 23. Power spectrum of the stochastic term. The red points show the stochastic term in the
M simulation at redshifts z = 0, 0.5, 1, 2 from top to bottom. The stochastic term of the L simulation
at z = 0 is shown by green triangles and agrees perfectly for k < 0.6hMpc�1 except for a small upturn
on large scales. The thick shaded line shows the systematic error on the L simulation at z = 0, which
exceeds the stochastic term on the largest scales, where the two simulations disagree. The red lines
show the phenomenological model for the stochastic term from Eq. (5.10).

Scale-dependence: On large scales, we can fit the stochastic term in Fig. 23 by

k

4
P

stoch

⇡ 5.7 ⇥ 104
�
h

�1Mpc
�3

D

10

✓
k

1 hMpc�1

◆4

. (5.6)

On the largest scales, we thus find that P

stoch

is independent of k. This is what we expect from
mass and momentum conservation: for a mass and momentum-conserving perturbation, the
lowest order correction to the density field is expected to scale as k

2 [6, 26], which corresponds
to a k-independent correction to �. The stochastic term predicted by the EFT comes from
a small-scale reshuffling of the matter, which is not describable in terms of the large-scale
displacements, but conserves mass and momentum on large scales. The scaling observed in
(5.6) is thus consistent with it being the stochastic term expected in the EFT framework.
More specifically, in a scaling Universe we expect

�2
stoch

=
k

3(k4
P

stoch

)

2⇡

2
= O(1)

✓
k

k

nl

◆7

(5.7)

and self-similarity dictates k

nl

/ a

�2/(n+3), where n is the slope of the initial power spectrum.
The fitted time dependence D

10 is reproduced by a slope of n = �1.6, which corresponds
to the slope of our input power spectrum at k = 0.1hMpc�1. Furthermore, from �2

stoch

=
(k/k

nl

)7 we can deduce k

nl

⇡ 0.32hMpc�1 at z = 0. Due to the steep scaling (k7), an order
one prefactor does not change k

nl

significantly. We show the time dependence of the power
law part of the stochastic term and the time dependence of the scale where it amounts to a
1% change in the power spectrum in Fig. 24.

Amplitude of the stochastic displacement To get an idea of the size of the stochas-
tic term, we use the measured power spectra to infer the corresponding root mean square
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Figure 24. Upper panel: Time/redshift dependence of the large scale amplitude of the stochastic
term. Lower panel: Time/redshift dependence of the scale, where the stochastic term amounts to 1%
of the total power.

displacement

�

2
stoch

=
1

3

Z
d3

k

(2⇡)3
h 

i

| 
i

i =
1

3

Z
d3

k

(2⇡)3
k

2
P

stoch

. (5.8)

and find a rms stochastic displacement �
stoch

' 0.8 Mpc/h (compared to �
nl

' 6.0 Mpc/h for
the full non-linear rms displacement). The integrand in Eq. (5.8) is peaked at k ⇡ 0.6 hMpc�1,
i.e. far beyond the range of scales where the stochastic term follows the k

4 scaling.
We do not expect perturbation theory to be able to capture the motion of particles within
halos. These motions will thus contribute a (probably significant) fraction of the stochastic
displacement. A crude estimate for this source of stochastic displacement can be obtained
by assuming that particles within a halo of mass m have a root-mean-square displacement of
roughly two virial radii R

vir

, and to average over all halos using the halo mass function:

�

2
stoch.,h

=

Z
dm

dn

dm

m

✓
2R

vir

(m)

◆2

/

Z
dm

dn

dm

m (5.9)

Integrating over all masses, this estimate yields �
stoch. motion in halo

' 1.1h

�1Mpc, similar
to �

stoch

. The integral peaks at M ⇡ 2 ⇥ 1014M�, i.e., for haloes of Lagrangian radius
r ⇡ 9h

�1Mpc. In Fourier space this corresponds to a wavenumber k ⇡ ⇡/r = 0.35hMpc�1. If
we assume that this stochastic term induces a Gaussian smoothing in the resulting Eulerian
space density field, we conclude that it produces a 1% change in the density power spectrum
at k ⇡ 0.2hMpc�1 and will thus contribute to the Eulerian EFT sound speed c

s

. The
time dependence can be introduced into the halo model by scaling the variance as �(M) !
D(a)�(M). The resulting �2

stoch.,h

then scales as D

1.6. For this scaling we employed a Sheth-
Tormen mass function [27].

Fitting function The stochastic term can be accounted for by a simple fitting function
that is constructed from the following requirements:
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Figure 15. Transfer function a1 of the 1tLPT model. It corresponds to a1 = P1⇥nl
P11

' 1 + ↵k

2 + P13
P11

,
which indicates that the 1tLPT power spectrum effectively includes the P13 term, even though �

(3)

is not explicitly included in the 1tLPT model.

P11 + P13 + ↵k

2
P11 + ... . Here, the term P13 is implicitly included in the 1tLPT power

spectrum, even though evaluating the 1tLPT displacement did not require computing �

(3).
In turn, the LPT and EFT can predict what these transfer functions should be, as

shown in Fig. 15. We see that the 3LPT model for a1 overpredicts its amplitude due to the
UV sensitivity of P13, whereas the 3EFT prediction, taking into account the counterterm
associated with ↵, is accurate to 1% even beyond k = 0.1hMpc�1.

This also generalizes to higher order: as soon as the term a

i

�

(i) is included, the LPT
contributions P

ij

to the non-linear power spectrum for all j are automatically included. This
is illustrated in Tab. 1.

a1 a2 a3 a4 a5

tree 11
1-loop 13 22
2-loop 15 24 33
3-loop 17 26 35 44
4-loop 19 28 37 46 55

Table 1. List of contributions to the LPT power spectrum at tree order and various loop orders. The
columns collect the terms that are effectively included by the transfer function (a1, a2, a3, a4 and a5

respectively). For example, this shows that 3tLPT contains all of the 2-loop terms, including P15 and
P24, even though �4 and �5 are not computed explicitly in �3tLPT

.

In practice, we fit for the free coefficients a

i

(k) for each k-bin independently, by mini-
mizing P

error

(k) = h|�
error

|2i = h|�
nl

�
P

i

a

i

�

i

|2i. If we interpret h�
a

|�
b

i ⌘ h�?

a

�

b

i as a scalar
product and h|�

a

|2i as a squared norm as before, we see that minimizing the norm of the
displacement error �

error

(i.e. minimizing P

error

) amounts to making the displacement error
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Figure 14. Comparison between the error power spectra for the artificial model �

model

(k) =q
Pnl(k)
P11(k)�

(1)(k) and �

3LPT

. Even though the former gives exactly the right non-linear power spectrum,
its error power spectrum is much larger, meaning that it is a wrong model for the displacement.

we are guaranteed to choose the value of ↵ that provides the best displacement field possible,
which prevents the risk of overfitting.

In practice though, because our measurement of ↵ is largely limited by systematic er-
rors in our N -body simulation suite, the difference between the value of ↵ obtained from
minimizing the error power spectrum and from fitting to the non-linear power spectrum is
small compared to the final uncertainty on ↵. This was not a priori obvious, and shows how
sensitive this measurement is to systematic errors on the largest scales of the simulation.

4 Transfer functions and ‘tLPT’

4.1 Optimal linear model from LPT – including higher-loop terms

In the previous section, we measured the EFT coefficient ↵, and compared the EFT model to
the various nLPT models. We found that the EFT significantly increases the range of validity
of perturbation theory. But we also wish to understand how close to optimal the EFT model
is. To do so, we compare it to the “ntLPT” models (for “LPT with transfer functions”), i.e.
the LPT models for which the LPT displacements are multiplied by free functions of the
modulus k ⌘ |k| of the wavenumber (the “transfer functions”, see also [16]):

�

ntLPT

(k) = a1(k)�(1)(k) + ... + a

n

(k)�(n)(k). (4.1)

For each of these models (LPT, EFT, tLPT), we compute the displacement error �

error

⌘
�

nl

��

model

. The transfer functions a

i

(k) of the tLPT models are chosen so as to minimize the
error power spectrum P

error

for each k-bin. Notice that the transfer functions are not chosen
so as to match the non-linear power spectrum. The tLPT models correspond to a lower bound
on P

error

, and thus allow to assess how close to optimal the LPT and EFT models are.
Besides, the transfer functions allow to effectively include certain higher order LPT and

EFT terms without having to compute them explicitly. For example, for the 1tLPT model
�1tLPT

= a1�
(1), the result of minimizing P

error

yields a1 = P1⇥nl

P11
, so that P1tLPT

=
P

2
1⇥nl

P11
'

– 22 –

10�2 10�1

k [h/Mpc]

�0.10

�0.05

0.00

0.05

0.10

P
m

od
el
/P

nl
�

1

3LPT (1-loop)

3EFT (1-loop)

3tLPT

10�2 10�1

k [h/Mpc]

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

P
er

ro
r/

P
nl

3LPT (1-loop)

3EFT (1-loop)

3tLPT

Figure 20. Comparison between 1-loop LPT, EFT and tLPT, in terms of their agreement with
simulation for the power spectrum (left panel), and the displacement field itself (right panel). The
EFT improves on the LPT, and is close to tLPT, with the latter performing slightly better on the
power spectrum. This shows that the 1-loop EFT cannot be outperformed by any expansion of the
form a1(k)�(1)(k) + a2(k)�(2)(k) + a3(k)�(3)(k) by more than a factor of two in the wavenumber up
to which we can trust the theory at percent level.

conserve mass and momentum and thus need to start as k

2
�

(1) [6, 26].

4.3 Optimality of the EFT at 1-loop

As explained earlier, we compare the EFT model to the tLPT models to assess how close
to optimal the EFT model is. In terms of the error power spectrum, which quantifies the
agreement with simulation at the level of the displacement field, the 1-loop EFT and tLPT
both have P

error

6 1%P

nl

up to k ' 0.2hMpc�1. This shows that the EFT displacement
is very close to the 3tLPT displacement, showing that the EFT model is close to optimal
at 1-loop order: no expansion of the form a1(k)�(1)(k) + a2(k)�(2)(k) + a3(k)�(3)(k) can
significantly outperform it. In terms of the non-linear power spectrum, the 1-loop EFT
provides a 1% fit to the power spectrum up to k & 0.1hMpc�1, compared to k ' 0.2hMpc�1

for the 3tLPT model. One might be able to achieve this factor of two extension in the range
over which the power spectrum can be described at the 1% level using 2-loop EFT.

5 The stochastic term

5.1 A floor in the error power spectrum

Detection of the stochastic term We wish to understand the error power spectra P
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for the various tLPT models. We make use of the orthogonal basis �

(i)? defined above. In
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Thus we can estimate the displacement errors for 1tLPT, 2tLPT and 3tLPT as follows:
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Figure 5. Error power spectra at redshift z = 0 for the L simulation and various orders of LPT and tLPT.
Left panel: Total power. The gray lines show the expectation for the stochastic term for k
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= 0.3 hMpc�1

and k
nl

= 0.5 hMpc�1, respectively. We see a decrease in mode coupling as we go to higher orders and
implement transfer functions on the density. Right panel: Ratio of the error power spectrum and the full
non-linear power spectrum.

striking observation in this case is that including s

(3) makes things worse. The curve labeled T �(1+2)

is effectively the equivalent of the LEFT one loop calculation. Even if s(3) is not included, the only
part of s(3) relevant at this order is the cross term 1 � 3 which is captured by the transfer function.
We have also computed another version of an effective one loop calculation T �(1 + 2 + 3) which gives
very similar results (although the transfer function is different). The comparison between T �(1 + 2)

and �(1 + 2 + 3) illustrates the fact that the overall transfer function is indeed crucial, it is better to
include that than to add an additional order in the displacement field if the goal is to minimize the
error at the level of the density field.

The line labeled T �(T1 + T2 + T3) uses transfer functions for all the displacements up to the
third order and plus an overall transfer function on the density to correct the leading order part of
the zero-lag terms from the mapping. This model yields the lowest error power spectrum, such that
we interpret it as the best possible perturbative model. We have also compared this to the case
where we have several transfer functions at the level of the density determined in the same way as the
displacement transfer functions in BSZ: T3�(T1+T2+T3)+T2�(T1+T2)+T1�(T1) (see App. A). The
latter contains all the terms in a two-loop EFT calculation and gives very similar results to the cases
considered here.6 The error we see in T �(T1 + T2 + T3) does not decrease appreciably if we include
higher order displacements either. We interpret this error as arising primarily from the stochastic
displacements sstoch.

We had uncovered a stochastic contribution to the displacement already in BSZ. The stochastic
term in the EFT arises from a mass and momentum conserving shuffling of mass on small scales. As
a result, its power spectrum has to scale as k

4 for low wavenumbers and we saw this behavior clearly
in BSZ for the divergence of the displacement. Fig. 5 however indicates that this behavior seems to
be violated by the error power spectrum in our simulations even on rather large scales, which we are
identifying with the stochastic term. We have performed a number of numerical tests to check the
stability of this stochastic contribution and found it to be stable. We show some of the checks in the
Appendix, for example Fig. 10 shows the comparison of the error power spectra found when analyzing
the L and M simulations.

We will discuss the shape of the error power spectrum in more detail in the next section. What
we will see is that on very large scales, this stochastic term of the density indeed agrees with the power

6At the two loop level, the linear counter term enters correlated with itself as P1̃1̃, but the second and third order
counterterms enter only correlated with perturbative terms as P2̃2 and P3̃1. To this extent, the counter term if present
in the data, should correlate with the perturbative second and third order basis vectors. Thus our T3�(T1+T2+T3)+
T2�(T1 + T2) + T1�(T1) captures all relevant terms for two loops. In fact one expects this example to be if anything
better than one might do in a first principle Eulerian EFT calculation as we are allowing the transfer functions to have
an arbitrary shape. We will discuss this in more detail in App. B.
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Figure 9. Power spectrum of the non-linear one halo term Eq. (5.10) extracted from the simulations and
the one halo term of the profile difference between the simulation and 1LPT Eq. (5.12). The gray line shows
1% of the linear power spectrum. We can clearly see that the profile differences amount to percent level
corrections to the linear power spectrum at k ⇡ 0.3 hMpc�1. We also show the stochastic term in Lagrangian
space and Eulerian space. The Eulerian stochastic term is larger than the profile difference on large scales
but approaches it at k ⇡ 1 hMpc�1.

Given the large scales/small wavenumbers where the stochastic term asymptotes to k

4, it is clearly
not dominated by dark matter halo profiles at these scales. Yet, the scale where the halo profile
difference amounts to one percent of the linear power spectrum is k = 0.28 hMpc�1, which is close
to the scale where the stochastic term crosses the 1% threshold. Recently, [36] found a compensated
one halo term that is orders of magnitude larger than the term discussed here. This difference arises
from the fact that we are taking the difference between 1LPT and the simulations at the field level,
whereas it was taken at the level of power spectra in [36].

6 Conclusions

Using the IR resummed basis provided by Lagrangian Perturbation Theory, we compared the pertur-
bative density fields with the results of N -body simulations sharing the same initial conditions.

Using LPT generated displacement fields with a k

2 transfer function on the linear field, as
suggested by the EFT at leading order, we manage to model the non-linear power spectrum to 1%

precision up to k ⇡ 0.1 hMpc�1 at z = 0. Precise measurements of the EFT coefficient show a scale
dependence of the coefficient extracted at 3LPT level for k > 0.07 hMpc�1 that is likely due to the
presence of missing two loop corrections. We also showed that the leading EFT counterterm is able
to capture the cutoff dependence of the LPT density field for the two cutoffs kmax = 0.6 hMpc�1

and kmax = 2.4 hMpc�1 considered here. To assess the maximum range of validity of perturbative
approaches for the density field and in order to avoid issues with small scale spurious motions we then
employed the regularized displacement fields with transfer functions defined in [18].

We find that in our highest order calculation, at redshift z = 0 the power spectrum of the density
field is reproduced with an accuracy of 1% (10%) up to k = 0.25 hMpc�1 (k = 0.46 hMpc�1). We
believe that the dominant source of the remaining error is the stochastic contribution, orthogonal to
the perturbative basis. The stochastic term will likely put an upper limit on the range over which the
non-linear power spectrum can be modeled by IR-resummed two-loop Eulerian EFT. Perturbation
theory approaches should generally only aim to model the deterministic (non-stochastic) part of the
density field.

The Eulerian stochastic term deviates from the Lagrangian stochastic term of the displacement
divergence on all but the largest scales. This is expected from the collapse of structure and can
be explained quantitatively by the three point function of the stochastic term itself and correlations
between the square of the stochastic term and perturbation theory. The stochastic term only scales
as k

4 on the largest scales, being shallower in the range where it starts to affect the power spectrum
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Figure 9. Power spectrum of the non-linear one halo term Eq. (5.10) extracted from the simulations and
the one halo term of the profile difference between the simulation and 1LPT Eq. (5.12). The gray line shows
1% of the linear power spectrum. We can clearly see that the profile differences amount to percent level
corrections to the linear power spectrum at k ⇡ 0.3 hMpc�1. We also show the stochastic term in Lagrangian
space and Eulerian space. The Eulerian stochastic term is larger than the profile difference on large scales
but approaches it at k ⇡ 1 hMpc�1.

Given the large scales/small wavenumbers where the stochastic term asymptotes to k

4, it is clearly
not dominated by dark matter halo profiles at these scales. Yet, the scale where the halo profile
difference amounts to one percent of the linear power spectrum is k = 0.28 hMpc�1, which is close
to the scale where the stochastic term crosses the 1% threshold. Recently, [36] found a compensated
one halo term that is orders of magnitude larger than the term discussed here. This difference arises
from the fact that we are taking the difference between 1LPT and the simulations at the field level,
whereas it was taken at the level of power spectra in [36].

6 Conclusions

Using the IR resummed basis provided by Lagrangian Perturbation Theory, we compared the pertur-
bative density fields with the results of N -body simulations sharing the same initial conditions.

Using LPT generated displacement fields with a k

2 transfer function on the linear field, as
suggested by the EFT at leading order, we manage to model the non-linear power spectrum to 1%

precision up to k ⇡ 0.1 hMpc�1 at z = 0. Precise measurements of the EFT coefficient show a scale
dependence of the coefficient extracted at 3LPT level for k > 0.07 hMpc�1 that is likely due to the
presence of missing two loop corrections. We also showed that the leading EFT counterterm is able
to capture the cutoff dependence of the LPT density field for the two cutoffs kmax = 0.6 hMpc�1

and kmax = 2.4 hMpc�1 considered here. To assess the maximum range of validity of perturbative
approaches for the density field and in order to avoid issues with small scale spurious motions we then
employed the regularized displacement fields with transfer functions defined in [18].

We find that in our highest order calculation, at redshift z = 0 the power spectrum of the density
field is reproduced with an accuracy of 1% (10%) up to k = 0.25 hMpc�1 (k = 0.46 hMpc�1). We
believe that the dominant source of the remaining error is the stochastic contribution, orthogonal to
the perturbative basis. The stochastic term will likely put an upper limit on the range over which the
non-linear power spectrum can be modeled by IR-resummed two-loop Eulerian EFT. Perturbation
theory approaches should generally only aim to model the deterministic (non-stochastic) part of the
density field.

The Eulerian stochastic term deviates from the Lagrangian stochastic term of the displacement
divergence on all but the largest scales. This is expected from the collapse of structure and can
be explained quantitatively by the three point function of the stochastic term itself and correlations
between the square of the stochastic term and perturbation theory. The stochastic term only scales
as k

4 on the largest scales, being shallower in the range where it starts to affect the power spectrum
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NL �(1) �(1 + 2)

�(1 + 2 + 3) �(T1 + T2 + T3) T �(T1 + T2 + T3)

Figure 7. Non linear transformation of the density field in a patch of 300 h�1Mpc length and 15 h�1Mpc
depth.

well correlated the structure in a Zel’dovich realization is with the non linear structure. Overdensities
are washed out and voids are clearly underdense. Adding higher order displacement fields and transfer
functions on the displacement fields has no strong imprint in this picture beyond a slight sharpening
of the overdensities and filaments. The final density transfer function shown in the last panel clearly
has the strongest effect, most remarkably a sharpening of structures in all environments. But even at
this level there are still obvious differences between the best perturbative approach and the non-linear
field.

5 Stochastic Term

In BSZ we identified an irreducible error at the field level that we associated with the stochastic
term of the EFT. In this Section, we are relating the Lagrangian stochastic term to the Eulerian one.
From now on we will consider displacement fields up to a certain order including all transfer functions
and denote them sPT, in particular we will be mostly concerned with the displacement fields up to
third order, i.e., sPT = a1s

(1)
+ a2s

(2)
+ a3s

(3). The total displacement field is then the sum of the
perturbative and the stochastic part s = sPT + sstoch.

Toy model: origin of the transfer function for the density

Let us consider the case where we expand only the stochastic displacement in Eq. (2.4)

(2⇡)

3
�

(D)
(k) + �(k) ⇡

Z
d3

q exp [ik · (q + sPT)]

 
1 + ikisstoch,i � 1

2

kikjsstoch,isstoch,j

� i
3!

kikjklsstoch,isstoch,jsstoch,l

! (5.1)
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Figure 6. Left panel: Ratio of the best possible EFT power spectrum to the non-linear power spectrum as a
function of redshift. We indicate the 1% and 10% accuracy lines and mark the crossing of the 1%-threshold
by vertical lines, whose wavenumbers are given in Tab. 1. Right panel: Ratio of the perturbative model with
and without transfer functions and the non-linear power spectrum at z = 0.

spectrum of the stochastic displacement divergence, as it should. But we will also identify corrections
that arise from the mapping from Lagrangian to Eulerian space leading to deviations from the k

4

scaling on surprisingly large scales (k ⇡ 0.03 hMpc�1 at z = 0).
In Fig. 6 we show the ratio of error and non-linear power spectrum Perr/PNL for three redshifts

z = 0, 1, 2 for the T �(T1 + T2 + T3) example to quantify up to which wavenumber the perturbative
calculation can be expected to agree with the N -body result. We quote the wavenumbers at which
the stochastic power crosses the 1% and 10% level in Tab. 1. While one should not focus too much
on the specific values, one should definitely note the steepness of the curves in the left panel of Fig. 6.
This means that at a fixed k away from the non-linear scale, the size of the error changes dramatically
as one goes to higher wavenumbers. This is important, since for data analysis applications, such as
trying to see the small effects of primordial non-Gaussianity in the two- and three point functions [2],
precision will probably be more important than reach.

The right panel of Fig. 6 shows Pmodel/PNL�1 and illustrates again that the biggest improvement
in reach comes from the inclusion of the final transfer function, fixing the problems caused by the
mapping. The comparison between T �(1+2) and T �(1+2+3), which are both effectively equivalent to
one-loop EFT calculations (with higher derivative counterterms) shows the difference that the higher
order terms that are only partially included can make. It is amusing to note that T �(1 + 2 + 3) is
actually slightly worse, so the additional work to include s

(3) did not result in an improvement here.
This is perhaps not surprising given how bad s

(3) is on small scales and the fact that the Lagrangian to
Eulerian mapping makes the large scale density depend on these mistakes. Of course with additional
freedom from more counter terms one should be able to absorb these differences. Finally one may
notice that in terms of reach, T �(T1 + T2 + T3) does not even improve by a factor of two. But reach
is perhaps the wrong metric as the error curves are very steep. Fig. 5 shows that away from the
non-linear scale, the error in T �(T1 + T2 + T3) is smaller than the one in T �(1 + 2) by about one
order of magnitude.

A map of the various density fields discussed in this section is shown in Fig. 7. It clearly shows how

z k1% k10%

0 0.25 hMpc�1
0.46 hMpc�1

1 0.48 hMpc�1
0.98 hMpc�1

2 0.85 hMpc�1
1.72 hMpc�1

Table 1. Wavenumbers, where the stochastic term amounts to a 1% or 10% correction to the non-linear
matter power spectrum.
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Comparison with simulations

• Comparison can be made without cosmic 
variance. Agreement is extremely good.  

• It can be used to test simulations on large 
scales. Easy to spot errors in simulations. 

• Improve on linear growth factor without having 
to do many time steps. Non conservation of 
momentum.  

• Errors in simulations can be characterized in 
the same way. We should routinely report and 
have a theory of the errors in simulations as a 
function of sim parameters



2

changing higher order counter terms. At the order required for a two loop power spectrum calculation there is only
one counter term for which @j⌧
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where F2 and F3 are the standard SPT kernels. There are six free parameters in this expression in addition to the
lowest order one present for the one loop calculation. One should also consider adding a higher derivative counter term
k
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4P (k). Finally there are many additional terms one could add that contribute as k2l2P (k) but this k dependence

was already fixed by the one loop term (proportional to l

2
1) thus they need not be included as long as the piece of

the two-loop SPT result that scales this way is also discarded. Otherwise they must be picked to identically cancel
this contribution and thus do not constitute a free parameter. Equation (1) includes all e↵ects associated with the
non-locality in time and the time dependence of the normalization coe�cients. Of all these counter terms, two of the
parameters l2c and l̄2c originate from the same counter term, the quadratic stress tensor counterterm whose divergence
is not a pure gradient. Their ratio would be known if the time dependent normalization of the quadratic stress tensor
counterterm was known. The shape of these terms is shown to be very similar.

II. THE EFT OF LSS: LAGRANGIAN FORMULATION

In the EFT of LSS one sets to solve perturbatively the following equations:
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These equations di↵er from those of standard perturbation theory (SPT) due to the addition of a new source, a stress
tensor source ⌧ij in the Euler equation. This source arises due to the e↵ect of small scales where the perturbative
solution of SPT is not applicable. What the EFT of LSS provides is an organizing framework for how to model this
source, namely a list of terms with their associated free parameters that need to be introduced to achieve a desired
accuracy.

EFT is a theory for the long wavelength modes that is not local in time, as both long and short modes evolve with
the same timescale, the Hubble scale. This long memory of the short modes implies that the operators introduced
to model ⌧ij need to be expressed as integrals along the fluid trajectory [18, 22]. Thus we start by defining the fluid
trajectory.
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is not a pure gradient. Their ratio would be known if the time dependent normalization of the quadratic stress tensor
counterterm was known. The shape of these terms is shown to be very similar.
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These equations di↵er from those of standard perturbation theory (SPT) due to the addition of a new source, a stress
tensor source ⌧ij in the Euler equation. This source arises due to the e↵ect of small scales where the perturbative
solution of SPT is not applicable. What the EFT of LSS provides is an organizing framework for how to model this
source, namely a list of terms with their associated free parameters that need to be introduced to achieve a desired
accuracy.

EFT is a theory for the long wavelength modes that is not local in time, as both long and short modes evolve with
the same timescale, the Hubble scale. This long memory of the short modes implies that the operators introduced
to model ⌧ij need to be expressed as integrals along the fluid trajectory [18, 22]. Thus we start by defining the fluid
trajectory.
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where F2 and F3 are the standard SPT kernels. There are six free parameters in this expression in addition to the
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k

4
l

4
4P (k). Finally there are many additional terms one could add that contribute as k2l2P (k) but this k dependence

was already fixed by the one loop term (proportional to l

2
1) thus they need not be included as long as the piece of

the two-loop SPT result that scales this way is also discarded. Otherwise they must be picked to identically cancel
this contribution and thus do not constitute a free parameter. Equation (1) includes all e↵ects associated with the
non-locality in time and the time dependence of the normalization coe�cients. Of all these counter terms, two of the
parameters l2c and l̄2c originate from the same counter term, the quadratic stress tensor counterterm whose divergence
is not a pure gradient. Their ratio would be known if the time dependent normalization of the quadratic stress tensor
counterterm was known. The shape of these terms is shown to be very similar.

II. THE EFT OF LSS: LAGRANGIAN FORMULATION

In the EFT of LSS one sets to solve perturbatively the following equations:

@⌧� + @i[(1 + �)vi] = 0 ,

@⌧v
i +Hv

i + @

i
�+ v

j
@jv

i = �1

⇢

@j⌧
ij ⌘ � 1

(1 + �)
@j ⌧̃

ij
, (3)

�� =
3

2
H2⌦m� .

These equations di↵er from those of standard perturbation theory (SPT) due to the addition of a new source, a stress
tensor source ⌧ij in the Euler equation. This source arises due to the e↵ect of small scales where the perturbative
solution of SPT is not applicable. What the EFT of LSS provides is an organizing framework for how to model this
source, namely a list of terms with their associated free parameters that need to be introduced to achieve a desired
accuracy.

EFT is a theory for the long wavelength modes that is not local in time, as both long and short modes evolve with
the same timescale, the Hubble scale. This long memory of the short modes implies that the operators introduced
to model ⌧ij need to be expressed as integrals along the fluid trajectory [18, 22]. Thus we start by defining the fluid
trajectory.

Mirbabayi & MZ 1511.01889 



2

changing higher order counter terms. At the order required for a two loop power spectrum calculation there is only
one counter term for which @j⌧

ij has a curl.
We explicitly calculated all the contributions for counter terms to the two loop power spectrum and found:

h�ct�SPT i = l

2
1k

2
�
P (k) + P22(k) + 2P13(k) + P̄22(k) + 2P̄13(k)

�

+ 2k3
Z

drr

2

(2⇡)2
P (kr)

Z 1

�1

dxP (k
p

y(r, x))


3

14

(1� x

2)

y(r, x)
+

1

2

(1� rx)x

ry(r, x)

�

⇥

k

2
l

2
2a + k

2
l

2
2b
(1� x

2)

y(r, x)
+ k

2
l

2
2c
(1� rx)(x� r)x

ry(r, x)

�

+ P (k)2k3
Z

drr

2

(2⇡)2
P (kr)

⇥
Z 1

�1

dx


k

2
l̄

2
2c
x

2(1� rx)(1� x

2)

y(r, x)
+ k

2
l

2
3a

(1� x

2)2

y(r, x)
+ k

2
l

2
3b
rx(1� x

2)2

y(r, x)

�
. (1)

Here P (k) is the linear power spectrum, y(r, x) = 1 + r

2 � 2rx and

P22(k) =

Z

p
2F 2

2 (p,k � p)P (p)P (|k � p|)

P13(k) = P (k)

Z

p
3F3(k,p,�p)P (p)

P̄22(k) =

Z

p
4F 2

2 (p,k � p)
p · (p� k)

k

2
P (p)P (|k � p|)

P̄13(k) = P (k)

Z

p
3F3(k,p,�p)

p

2

k

2
P (p), (2)

where F2 and F3 are the standard SPT kernels. There are six free parameters in this expression in addition to the
lowest order one present for the one loop calculation. One should also consider adding a higher derivative counter term
k

4
l

4
4P (k). Finally there are many additional terms one could add that contribute as k2l2P (k) but this k dependence

was already fixed by the one loop term (proportional to l

2
1) thus they need not be included as long as the piece of

the two-loop SPT result that scales this way is also discarded. Otherwise they must be picked to identically cancel
this contribution and thus do not constitute a free parameter. Equation (1) includes all e↵ects associated with the
non-locality in time and the time dependence of the normalization coe�cients. Of all these counter terms, two of the
parameters l2c and l̄2c originate from the same counter term, the quadratic stress tensor counterterm whose divergence
is not a pure gradient. Their ratio would be known if the time dependent normalization of the quadratic stress tensor
counterterm was known. The shape of these terms is shown to be very similar.

II. THE EFT OF LSS: LAGRANGIAN FORMULATION

In the EFT of LSS one sets to solve perturbatively the following equations:

@⌧� + @i[(1 + �)vi] = 0 ,

@⌧v
i +Hv

i + @

i
�+ v

j
@jv

i = �1

⇢

@j⌧
ij ⌘ � 1

(1 + �)
@j ⌧̃

ij
, (3)

�� =
3

2
H2⌦m� .

These equations di↵er from those of standard perturbation theory (SPT) due to the addition of a new source, a stress
tensor source ⌧ij in the Euler equation. This source arises due to the e↵ect of small scales where the perturbative
solution of SPT is not applicable. What the EFT of LSS provides is an organizing framework for how to model this
source, namely a list of terms with their associated free parameters that need to be introduced to achieve a desired
accuracy.

EFT is a theory for the long wavelength modes that is not local in time, as both long and short modes evolve with
the same timescale, the Hubble scale. This long memory of the short modes implies that the operators introduced
to model ⌧ij need to be expressed as integrals along the fluid trajectory [18, 22]. Thus we start by defining the fluid
trajectory.

3

Consider a fluid element that at time ⌧0 is located at position x0. Its position at time ⌧ is given by xfl(x0, ⌧0; ⌧)
which satisfies:
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It is convenient to define the (Lagrangian) location of a fluid element at the initial time q(x, ⌧) ⌘ xfl(x, ⌧ ; 0). The
displacement field is then defined as

 (x, ⌧) = x� q(x, ⌧). (5)

To make contact with the standard notation of the Lagrangian perturbation theory it is useful to invert the function
q(x, ⌧) and express the displacement field in Lagrangian coordinates
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where we introduced the convective derivative D⌧ . Thus the Euler equation becomes:
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One can decompose  i into a gradient and a curl piece. We will now obtain equations for each of these pieces. The
treatment follows closely the literature of Lagrangian perturbation theory, we are just adding the new terms coming
from the stress-tensor counter terms.

Scalar component of the displacement: For the scalar equation we take the divergence of the acceleration equation,
yielding:
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From the mapping between Lagrangian and Eulerian space x = q + and mass conservation
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we have that 1 + � = 1/J , where J is the determinant of the Jacobian matrix
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where �ij is the Kronecker delta (not to be confused with density contrast). Spatial indices are always raised and
lowered using �ij and its inverse. When convenient we will use a comma to denote spatial derivatives. Furthermore
if not explicitly mentioned partial derivatives are with respect to the Lagrangian coordinate q. The determinant is:
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1. Linear counter terms

The linear displacement is the gradient of a potential  (1)
k (q) = �

(1)
,k (q), where �(1)(q) = ��1

q

�0(q) is the initial
condition for the gravitational potential multiplied by the growth factor of the final time. In what follows we only
consider quantities at a single time, drop the time arguments, and absorb all growth factors into the initial Gaussian
fluctuations.

At the lowest order there are two possible counter terms:

⌧̄

(1)
ij / �ij 

(1)
k,k = �ij�

(1)
,kk

⌧̄

(1)
ij /  

(1)
i,j = �

(1)
,ij . (45)

In both cases

Ui = ⌧̄ij,j / (��(1)),i (46)

Thus up to third order in �0 the terms that are generated by solving the non-linear equations of motion with this
source term are degenerate with higher order counter terms. For two-loop power spectrum the counter terms have to
be included in tree-level and one-loop diagrams, i.e. one needs up to the third order solution in �0. Hence we do not
need to solve the associated equations of motion and the time dependence of these sources can be absorbed into the
amplitude of higher order counter terms. Thus this source only adds to the perturbation theory solution the term

 

ct(1)
k = a1(��

(1)),k. (47)

2. Quadratic counter terms

At this order we can construct counter terms by either using the gradient of the second order displacement,

 

(2)
k,l (q) or two first order ones  (1)

k,l (q) 
(1)
m,n(q). The second order displacement is also the gradient of a potential,

 

(2)
k (q) = �

(2)
,k (q). The general structure of the perturbation theory equation (25) is such that at any order the

expression for  (n)
k,k can be solved for in terms of local expressions containing lower order  (m)

i,j with m < n. The

counter terms that can be constructed out of  (2)
k (q),

⌧̄

(2)
ij,j / �

(2)
,ijj =  

(2)
j,ji (48)

can thus be rewritten in terms of quadratic combinations of  (1)
i,j , and they do not need to be considered separately.

There are three possible combinations of two  (1)
i,j = �

(1)
,ij to consider:
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ij / b1�ij(�

(1)
,kk)

2 + b2�ij�
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,kl�
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,kl + b3�
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,kj (49)

We can compute
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2
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,kl�
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,kl ),ij + b3(�
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(1)
,kl ),lj . (50)

For the terms proportional to b1 and b2, Ui is a pure gradient and thus for those we do not need to solve the equations
of motion and their time dependence is irrelevant. We could have also written:

⌧̄

(2)
ij / b4�
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,kk, (51)
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and thus this term is degenerate with what we already have.
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q

�0(q) is the initial
condition for the gravitational potential multiplied by the growth factor of the final time. In what follows we only
consider quantities at a single time, drop the time arguments, and absorb all growth factors into the initial Gaussian
fluctuations.

At the lowest order there are two possible counter terms:
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(1)
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(1)
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,ij . (45)

In both cases

Ui = ⌧̄ij,j / (��(1)),i (46)

Thus up to third order in �0 the terms that are generated by solving the non-linear equations of motion with this
source term are degenerate with higher order counter terms. For two-loop power spectrum the counter terms have to
be included in tree-level and one-loop diagrams, i.e. one needs up to the third order solution in �0. Hence we do not
need to solve the associated equations of motion and the time dependence of these sources can be absorbed into the
amplitude of higher order counter terms. Thus this source only adds to the perturbation theory solution the term

 

ct(1)
k = a1(��

(1)),k. (47)

2. Quadratic counter terms

At this order we can construct counter terms by either using the gradient of the second order displacement,

 

(2)
k,l (q) or two first order ones  (1)

k,l (q) 
(1)
m,n(q). The second order displacement is also the gradient of a potential,

 

(2)
k (q) = �

(2)
,k (q). The general structure of the perturbation theory equation (25) is such that at any order the

expression for  (n)
k,k can be solved for in terms of local expressions containing lower order  (m)

i,j with m < n. The

counter terms that can be constructed out of  (2)
k (q),
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(2)
ij,j / �

(2)
,ijj =  

(2)
j,ji (48)

can thus be rewritten in terms of quadratic combinations of  (1)
i,j , and they do not need to be considered separately.

There are three possible combinations of two  (1)
i,j = �

(1)
,ij to consider:
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We can compute
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For the terms proportional to b1 and b2, Ui is a pure gradient and thus for those we do not need to solve the equations
of motion and their time dependence is irrelevant. We could have also written:
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(1)
,kk, (51)
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and thus this term is degenerate with what we already have.
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3. Cubic counter terms

At this order we can construct counter terms in three di↵erent ways. We can combine three first order terms,

 

(1)
k,l (q), one first order and one second order term  

(1)
k,l (q) 

(2)
l,m(q) or one third order term  

(3)
k,l (q). We get:
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,kj) + c9�ij�

(1)
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+ c10( 
(3)
i,j +  

(3)
j,i ) (53)

We have not included any term proportional to  (2)
k,k or  (3)

k,k as they are degenerate with the terms constructed out of
lower order displacement fields.

III. EULERIAN DENSITY

The goal of this section is to obtain an expression for the density field and compute the corrections to the power
spectrum coming from all the counter terms, and to prove equation (1).

So far we have solved the Eulerian EFT equations by solving for  (q, ⌧) such that x(q, ⌧) = q +  (q, ⌧) with
 (q, 0) = 0. We are interested in computing the density field which is obtained using the standard formulas of
Lagrangian perturbation theory.

We can obtain the final density directly from J which we have solved explicitly in terms of q. Using (11)

�(x) =
⇣ 1

J(q)
� 1

⌘

x=q+ 
=

⇣ 1

(1 +K + L+M)
� 1

⌘

x=q+ 
(54)

This expression should be used perturbatively expanding up to a given order in the displacement field. In reality J

depends only on  i,j while there are non-linear terms from the mapping that depend on  i. These two sets of terms
can have di↵erent sizes and the latter should be resummed at the BAO scale.

One can also obtain an equation in Fourier space

�(k) =

Z
d

3
q e

ik·(q+ )
, (55)

again to be treated perturbatively. We can take a time derivative of this equation and obtain:

�̇(k) = i

Z
d

3
q k ·  ̇ e

ik·(q+ ) = ik ·
Z

d

3
x (1 + �)v e

ik·x
. (56)

Thus in this formulation the continuity equation does not have any additional terms. This implies that it is the
density and momentum that are being treated as primary variables and the velocity (and  ) as composite operators
(see e.g. [22] for a discussion on this point).

These formulas are identical to those of standard Lagrangian perturbation theory except for the additional con-
tribution to the displacement field coming from the counter terms. These equations, if expanded consistently to a
given order in the power spectrum, give the same answer as the standard SPT formulas. Thus all we need to do
is to keep track of the contributions from the counter terms. For the two loop power spectrum calculation we are
only interested in contributions linear in the counter terms. The lowest order counter term counts as third order in
perturbation theory and thus its squared is a sixth order contribution to the power spectrum which is the same as
two-loop but is simply given by k

4
l

4
P (k). The coe�cient of this term is however a free parameter as one can directly

write ⌧̄ij,ij = l

4�2
� as a new linear, higher derivative, counter term.

Expanding equation (55) up to linear order in the counter terms and expressing everything in Fourier space we get:

�(k) = �

SPT (k)+
X

n

i

n

(n� 1)!

Z
d

3
p1

(2⇡)3
· · · d

3
pn

(2⇡)3
(2⇡)3�D(p1+· · ·pn�k)k · ct(p1)k · SPT (p2) · · ·k · SPT (pn) (57)
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One can also obtain an equation in Fourier space
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Thus in this formulation the continuity equation does not have any additional terms. This implies that it is the
density and momentum that are being treated as primary variables and the velocity (and  ) as composite operators
(see e.g. [22] for a discussion on this point).

These formulas are identical to those of standard Lagrangian perturbation theory except for the additional con-
tribution to the displacement field coming from the counter terms. These equations, if expanded consistently to a
given order in the power spectrum, give the same answer as the standard SPT formulas. Thus all we need to do
is to keep track of the contributions from the counter terms. For the two loop power spectrum calculation we are
only interested in contributions linear in the counter terms. The lowest order counter term counts as third order in
perturbation theory and thus its squared is a sixth order contribution to the power spectrum which is the same as
two-loop but is simply given by k

4
l

4
P (k). The coe�cient of this term is however a free parameter as one can directly

write ⌧̄ij,ij = l

4�2
� as a new linear, higher derivative, counter term.

Expanding equation (55) up to linear order in the counter terms and expressing everything in Fourier space we get:

�(k) = �

SPT (k)+
X

n

i

n

(n� 1)!

Z
d

3
p1

(2⇡)3
· · · d

3
pn

(2⇡)3
(2⇡)3�D(p1+· · ·pn�k)k · ct(p1)k · SPT (p2) · · ·k · SPT (pn) (57)

9

3. Cubic counter terms

At this order we can construct counter terms in three di↵erent ways. We can combine three first order terms,

 

(1)
k,l (q), one first order and one second order term  

(1)
k,l (q) 

(2)
l,m(q) or one third order term  

(3)
k,l (q). We get:

⌧̄

(3)
ij / c1�ij(�

(1)
,kk)

3 + c2�
(1)
,ik�

(1)
,kj�

(1)
,mm + c3�ij�

(1)
,kl�

(1)
,kl�

(1)
,mm + c4�

(1)
,ik�

(1)
,kl�

(1)
,lj

+ c5�ij�
(1)
,kl�

(1)
,lm�

(1)
,mk + c6�

(1)
,kl�

(1)
,kl�

(1)
,ij + c7�

(1)
,ij �

(1)
,mm�

(1)
,nn

+
c8

2
(�(1),ik�

(2)
,kj + �

(2)
,ik�

(1)
,kj) + c9�ij�

(1)
,kl�

(2)
,kl

+ c10( 
(3)
i,j +  

(3)
j,i ) (53)

We have not included any term proportional to  (2)
k,k or  (3)

k,k as they are degenerate with the terms constructed out of
lower order displacement fields.

III. EULERIAN DENSITY

The goal of this section is to obtain an expression for the density field and compute the corrections to the power
spectrum coming from all the counter terms, and to prove equation (1).

So far we have solved the Eulerian EFT equations by solving for  (q, ⌧) such that x(q, ⌧) = q +  (q, ⌧) with
 (q, 0) = 0. We are interested in computing the density field which is obtained using the standard formulas of
Lagrangian perturbation theory.

We can obtain the final density directly from J which we have solved explicitly in terms of q. Using (11)
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This expression should be used perturbatively expanding up to a given order in the displacement field. In reality J

depends only on  i,j while there are non-linear terms from the mapping that depend on  i. These two sets of terms
can have di↵erent sizes and the latter should be resummed at the BAO scale.

One can also obtain an equation in Fourier space
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, (55)

again to be treated perturbatively. We can take a time derivative of this equation and obtain:
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ik·(q+ ) = ik ·
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Thus in this formulation the continuity equation does not have any additional terms. This implies that it is the
density and momentum that are being treated as primary variables and the velocity (and  ) as composite operators
(see e.g. [22] for a discussion on this point).

These formulas are identical to those of standard Lagrangian perturbation theory except for the additional con-
tribution to the displacement field coming from the counter terms. These equations, if expanded consistently to a
given order in the power spectrum, give the same answer as the standard SPT formulas. Thus all we need to do
is to keep track of the contributions from the counter terms. For the two loop power spectrum calculation we are
only interested in contributions linear in the counter terms. The lowest order counter term counts as third order in
perturbation theory and thus its squared is a sixth order contribution to the power spectrum which is the same as
two-loop but is simply given by k

4
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4
P (k). The coe�cient of this term is however a free parameter as one can directly

write ⌧̄ij,ij = l

4�2
� as a new linear, higher derivative, counter term.

Expanding equation (55) up to linear order in the counter terms and expressing everything in Fourier space we get:
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Equations of motion

Counter terms

Mapping from displacement to density
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• The time dependence of the counter term matters when including it into 
the equations of motion to compute terms linear in the counter term but 
higher order in perturbations.   

• If the divergence of stress tensor is the gradient of a scalar then counter 
terms generated by the equations of motions are degenerate with higher 
order counter terms for two additional orders.  

• For 2-loop counter terms this means that only one of the quadratic counter 
terms need to be followed through the equation of motion. Even in this 
case, at the level of the power spectrum these terms are degenerate with 
cubic counter terms.  

• There are higher order counter terms associated with a given counter term 
from the mapping between displacement and density. Those do not 
depend on the time dependence of the source. 
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1. Linear counter terms

The linear displacement is the gradient of a potential  (1)
k (q) = �

(1)
,k (q), where �(1)(q) = ��1

q

�0(q) is the initial
condition for the gravitational potential multiplied by the growth factor of the final time. In what follows we only
consider quantities at a single time, drop the time arguments, and absorb all growth factors into the initial Gaussian
fluctuations.

At the lowest order there are two possible counter terms:

⌧̄

(1)
ij / �ij 

(1)
k,k = �ij�

(1)
,kk

⌧̄

(1)
ij /  

(1)
i,j = �

(1)
,ij . (45)

In both cases

Ui = ⌧̄ij,j / (��(1)),i (46)

Thus up to third order in �0 the terms that are generated by solving the non-linear equations of motion with this
source term are degenerate with higher order counter terms. For two-loop power spectrum the counter terms have to
be included in tree-level and one-loop diagrams, i.e. one needs up to the third order solution in �0. Hence we do not
need to solve the associated equations of motion and the time dependence of these sources can be absorbed into the
amplitude of higher order counter terms. Thus this source only adds to the perturbation theory solution the term

 

ct(1)
k = a1(��

(1)),k. (47)

2. Quadratic counter terms

At this order we can construct counter terms by either using the gradient of the second order displacement,

 

(2)
k,l (q) or two first order ones  (1)

k,l (q) 
(1)
m,n(q). The second order displacement is also the gradient of a potential,

 

(2)
k (q) = �

(2)
,k (q). The general structure of the perturbation theory equation (25) is such that at any order the

expression for  (n)
k,k can be solved for in terms of local expressions containing lower order  (m)

i,j with m < n. The

counter terms that can be constructed out of  (2)
k (q),

⌧̄

(2)
ij,j / �

(2)
,ijj =  

(2)
j,ji (48)

can thus be rewritten in terms of quadratic combinations of  (1)
i,j , and they do not need to be considered separately.

There are three possible combinations of two  (1)
i,j = �

(1)
,ij to consider:

⌧̄

(2)
ij / b1�ij(�

(1)
,kk)

2 + b2�ij�
(1)
,kl�

(1)
,kl + b3�

(1)
,ik�

(1)
,kj (49)

We can compute

⌧̄

(2)
il,lj / b1(�

(1)
,kk)

2
,ij + b2(�

(1)
,kl�

(1)
,kl ),ij + b3(�

(1)
,ik�

(1)
,kl ),lj . (50)

For the terms proportional to b1 and b2, Ui is a pure gradient and thus for those we do not need to solve the equations
of motion and their time dependence is irrelevant. We could have also written:

⌧̄

(2)
ij / b4�

(1)
,ij �

(1)
,kk, (51)

however

(�(1),ij �
(1)
,kk),j =

✓
1

2
�

ij
h
(�(1),kk)

2 � �

(1)
,kl�

(1)
,kl

i
+ �

(1)
,ik�

(1)
,kj

◆

,j

, (52)

and thus this term is degenerate with what we already have.
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FIG. 1: Left: Two loop counter term contributions for l2 = 1 (h�1Mpc)2. Right: Two loop counter term

contributions normalized so that they are 1% of the linear power spectrum at k = 0.15 hMpc�1. We also show a
representative power law that roughly captures the scaling of these terms.

One should point out that the only reason why the various counter terms are not identical is that the power spectrum
of matter fluctuation in ⇤CDM is not a power law. If it were, all the terms we have computed would have the same
scale dependence, k2n+5 where n is the slope of the density power spectrum. Around k ⇠ 0.2hMpc�1 the slope of the
no-wiggle power spectrum is around n ⇠ �1.8. The bottom panel of figure 1 shows the predicted power law for these
slope, it captures the typical scaling of the new counter terms reasonably well. These representative power law is
shallower than that of the contribution from the next higher derivative operator that scales as k4P / k

n+4. However
this term is not so much steeper than the steepest of the counter terms we have computed. For example properly
normalized this higher derivative contribution and the term proportional to l

2
21 di↵er by less that 30% in the range

0.05hMpc�1
< k < 0.4hMpc�1.

One can get some further intuition as to what happens in ⇤CDM by looking at the contribution to the momentum
integrals coming for the various counter terms from modes q ⌧ k and q � k. These contributions are controlled by
di↵erent parameters. The amplitude of the contribution from modes with q � k is determined k

2
l

2
✏s while the e↵ect

of modes q ⌧ k depends on two separate parameters, k2l2✏� and neffk
2
l

2
✏� defined as

✏s = k

2

Z

q�k

d

3
q

(2⇡)3
P (q)

q

2

✏� =

Z

q⌧k

d

3
q

(2⇡)3
P (q)

neff =
d logP

d log k
. (99)

The three parameter controlling the size of the IR and UV contributions to the integrals are shown in figure 2.
Their shape is not identical. The contribution from each of these pieces to the various counter terms we computed in
this paper is di↵erent. This accounts for the slight di↵erence in the shapes of the terms we calculated. For example
the two IR parameters ( k2l2✏� and neffk

2
l

2
✏�) give the biggest contribution to the quadratic counter terms over the

scales of interest while the ✏s is the biggest contribution to the cubic ones. Another di↵erence between the terms is
that the 2 � 2 type integrals (when a quadratic term is correlated with the quadratic piece of the SPT result) does
not show residual wiggles. The 1� 3 type integrals (when a cubic term is correlated with the linear piece of the SPT
result) of course does as it is proportional to the linear power spectrum (before IR resummation). We note that the
counter term proportional to l

2
23 contains a 1�3 piece, which is equal to the term proportional to l̄

2
23 which as defined
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✏�. For the plot we have chosen

l

2 = 1 h

�2Mpc2 and neff is computed for the power spectrum without BAO wiggles.
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FIG. 3: Left: Fit to the five two loop counter terms using a linear combination of k2P ✏� and k

2
P ✏s . Right: adding

a term proportional to k

2
neffP ✏�.

does not have a 2-2 contribution. So both the l

2
23 and l̄

2
23 have some wiggles.

The higher order counter term that derives from the linear counter terms is also parametrically di↵erent. This is
due to two facts, its IR contribution has an additional dependence on ↵effk

2
l

2
✏� where the running of the spectral

index is ↵eff = dneff

d log k . Furthermore the UV and IR pieces are more comparable leading to a partial cancellations
that changes the final shape.

It is instructive to see how well the counter terms can be fit over the range of interest as a combination of their limits
k

2
P ✏�, k2P ✏s and k

2
neffP ✏�, where for the slope we have taken the slope of the power spectrum without the BAO

wiggles. This is shown in figure 3. Even the combination of the first two terms does a very good job in approximating
the di↵erent shapes, getting residuals at a few percent level. Given that at k = 0.2 hMpc�1 the counter terms we
have studied contribute at the few percent level, percent level residuals should be su�cient to compare with existing
simulations. Most of the di↵erence is seen for the terms dominated by the IR contribution. Our approximation in
terms of neff is probably too crude. In any case, due to their steep slope, the range of scales over which these counter
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does not have a 2-2 contribution. So both the l

2
23 and l̄

2
23 have some wiggles.

The higher order counter term that derives from the linear counter terms is also parametrically di↵erent. This is
due to two facts, its IR contribution has an additional dependence on ↵effk

2
l

2
✏� where the running of the spectral

index is ↵eff = dneff

d log k . Furthermore the UV and IR pieces are more comparable leading to a partial cancellations
that changes the final shape.

It is instructive to see how well the counter terms can be fit over the range of interest as a combination of their limits
k

2
P ✏�, k2P ✏s and k

2
neffP ✏�, where for the slope we have taken the slope of the power spectrum without the BAO

wiggles. This is shown in figure 3. Even the combination of the first two terms does a very good job in approximating
the di↵erent shapes, getting residuals at a few percent level. Given that at k = 0.2 hMpc�1 the counter terms we
have studied contribute at the few percent level, percent level residuals should be su�cient to compare with existing
simulations. Most of the di↵erence is seen for the terms dominated by the IR contribution. Our approximation in
terms of neff is probably too crude. In any case, due to their steep slope, the range of scales over which these counter
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contributions normalized so that they are 1% of the linear power spectrum at k = 0.15 hMpc�1. We also show a
representative power law that roughly captures the scaling of these terms.

One should point out that the only reason why the various counter terms are not identical is that the power spectrum
of matter fluctuation in ⇤CDM is not a power law. If it were, all the terms we have computed would have the same
scale dependence, k2n+5 where n is the slope of the density power spectrum. Around k ⇠ 0.2hMpc�1 the slope of the
no-wiggle power spectrum is around n ⇠ �1.8. The bottom panel of figure 1 shows the predicted power law for these
slope, it captures the typical scaling of the new counter terms reasonably well. These representative power law is
shallower than that of the contribution from the next higher derivative operator that scales as k4P / k

n+4. However
this term is not so much steeper than the steepest of the counter terms we have computed. For example properly
normalized this higher derivative contribution and the term proportional to l

2
21 di↵er by less that 30% in the range

0.05hMpc�1
< k < 0.4hMpc�1.

One can get some further intuition as to what happens in ⇤CDM by looking at the contribution to the momentum
integrals coming for the various counter terms from modes q ⌧ k and q � k. These contributions are controlled by
di↵erent parameters. The amplitude of the contribution from modes with q � k is determined k

2
l

2
✏s while the e↵ect

of modes q ⌧ k depends on two separate parameters, k2l2✏� and neffk
2
l

2
✏� defined as

✏s = k

2

Z

q�k

d

3
q

(2⇡)3
P (q)

q

2

✏� =

Z

q⌧k

d

3
q

(2⇡)3
P (q)

neff =
d logP

d log k
. (99)

The three parameter controlling the size of the IR and UV contributions to the integrals are shown in figure 2.
Their shape is not identical. The contribution from each of these pieces to the various counter terms we computed in
this paper is di↵erent. This accounts for the slight di↵erence in the shapes of the terms we calculated. For example
the two IR parameters ( k2l2✏� and neffk

2
l

2
✏�) give the biggest contribution to the quadratic counter terms over the

scales of interest while the ✏s is the biggest contribution to the cubic ones. Another di↵erence between the terms is
that the 2 � 2 type integrals (when a quadratic term is correlated with the quadratic piece of the SPT result) does
not show residual wiggles. The 1� 3 type integrals (when a cubic term is correlated with the linear piece of the SPT
result) of course does as it is proportional to the linear power spectrum (before IR resummation). We note that the
counter term proportional to l

2
23 contains a 1�3 piece, which is equal to the term proportional to l̄

2
23 which as defined

k2l2✏� k2l2✏�neff

k2l2✏s

Mirbabayi & MZ 1511.01889 



7

where a1, . . . , a4 are numerical coe�cients of order one.6

The last term in Eq. (31) is due to primordial NG. The
leading part of the bispectrum proportional to fNL simply
comes from the linear evolution of the initial bispectrum
function and reads

BNG
123(z) = A4P (k1, z)P (k2, z)S(k1, k2, k3)

⇥ fNL · H
2
0⌦m

D+(z)

T (k3)

T (k1)T (k2)
k1k2k

2
3 + 2 perm. ,

(36)

where the shape S(k1, k2, k3) is given by

Seq.
123

9
=

1

k1k22k
3
3

� 1

3k21k
2
2k

2
3

� 1

2k31k
3
2

+ 5 perm. , (37)

for equilateral NG and

Sloc.
123

3
=

1

k31k
3
2

+
1

k31k
3
3

+
1

k32k
3
3

, (38)

for local NG [22]. The amplitude fNL in two di↵erent
cases is f eq.

NL and f loc.
NL .

So far we have described the model for the one-loop
matter bispectrum. The full calculation of one-loop bis-
pectrum for biased tracers has not been done and is be-
yond the scope of this paper. For the bispectrum, we will
thus use a simple biasing model keeping only the leading
terms in the bias expansion

�g = b1� +
b2
2
�2 + bG

2

G2 . (39)

Here we consider the first term at all orders contribut-
ing to the one loop-bispectrum (i.e. up to fourth order),
whereas the second and third terms are evaluated only at
tree level. This model is incomplete (and inconsistent)
at one-loop, and hence the constraints on NG that we
obtain give lower bounds for the true answer. Including
all relevant terms and marginalizing over the additional
parameters generically weakens the constraints. In our
simple biasing model we include loops only in combina-
tion with linear bias and the corresponding galaxy bis-
pectrum is given by

Bg(k1, k2, k3, z) = b31B
NL
123(z) + b21b2⌃123(z)

+ 2b21bG2

⇥123(z) + sb,1(z) + sb,2(z) [Pg(k1) + 2perm] ,
(40)

with ⌃123(z) = A4P (k1, z)P (k2, z) + 2 perm. and

⇥123(z) = A4

✓
(k1 · k2)2

k21k
2
2

� 1

◆
P (k1, z)P (k2, z)+2 perm.

(41)

6

The values of these coe�cients can be found in [20]

a
1

=

58812

32879

, a
2

=

114624

32879

, a
3

=

231478

32879

, a
4

=

49636

32879

. (35)
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FIG. 2: Theoretical errors for the linear theory and one-loop
power spectrum (see Eq. (42)) as a function of k. The cosmic
variance is plotted for the redshift bin 1 < z < 2. Three solid
lines are relative suppression of the power spectrum for three
di↵erent M⌫ .

The last two terms in the bispectrum come from stochas-
tic terms (see appendix).

Theoretical error.—The last ingredient that we need is an
estimate for the theoretical error E(k, z). Let us begin
with the power spectrum. As we already said, we roughly
expect the error to be of the form (k/kNL)(3+n)l. To get
the correct scalings and amplitudes we fit the envelope
of the explicit one-loop and two-loop calculations. The
error E(k, z) is given by

Ep(k, z) = b21

✓
D+(z)

D+(0)

◆2l

P (k, z)

(
(k̂/0.31)1.8 l = 1 ,

(k̂/0.23)3.3 l = 2 .

(42)

where k̂ = k/hMpc�1. In Fig. 2 we show the size of these
errors compared to signal for di↵erent neutrino masses.
It is important to stress that our formulas are correct
only for the dark matter power spectrum and that the
errors for the power spectrum of biased tracers might be
larger. We will use Eq. (42) for all our forecasts.
The errors for the bispectrum are harder to estimate.

We will simply assume the same power laws as in the
case of the power spectrum

Eb(k1, k2, k3, z) = Btree(k1, k2, k3, z)

⇥ 3b31

✓
D+(z)

D+(0)

◆2l
(
(k̂t/3/0.31)1.8 l = 1 ,

(k̂t/3/0.23)3.3 l = 2 ,

(43)
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where k̂t = (k1+k2+k3)/hMpc�1. This is just an approx-
imation which certainly does not capture the full shape
of the higher loop corrections. However, it provides a
good estimate for the error. We checked it against ex-
plicit one-loop calculation of [20] and an estimate of the
two-loop bispectrum from the N -body simulations in the
same study.

Parameters and priors.— To summarize, in our joint
analysis we use the following set of parameters

p = {fNL,M⌫ , A,Rp, Rb, b1, b2, bG
2

, b�
3

} . (44)

In most of our forecasts, unless otherwise specified, we
use the following fiducial values

p0 = {0, 0.06 meV, 1, 1 h�1Mpc, 1 h�1Mpc,

2, 0.5, 0.1, 0.1} .
(45)

There are no priors on fNL and M⌫ . Priors for other
parameters are

�A = 0.02 , �b
1

= 4 , �b
2

= 2 ,

�Rp = �Rb = 1 h�1Mpc , �bG
2

= �b
�

3

= 1 .
(46)

For simplicity, we assume that a single galaxy sample
with specific bias parameters spans the whole range from
z = 0 to z = 5. We are aware that this is a unrealistic
scenario, but it is in line with our general approach for
giving lower bounds on the errors of primordial NG. In-
creasing the number of free parameters can only degrade
the constraints. For neutrino mass only the relatively low
redshifts (z < 2) are relevant where the results should be
more robust.

We are also going to use di↵erent values of shot noise.
We will always set sp(z) = sb,2(z) = 1/n(z) and sb,1(z) =
1/n2(z) with priors of 10% in both cases. Here n(z) is
the number density of galaxies at redshift z. In reality,
the redshift dependence should account both for the fact
that distant galaxies are dimmer and that they evolve
in time. Therefore, it is a function both of the survey
properties, selection criteria, formation history and evo-
lution of di↵erent types of galaxies or other tracers. To
roughly get an idea how this redshift dependence a↵ect
the results, we will use a simple power law

n(z) = n0(1 + z)↵ , (47)

with di↵erent values of ↵. For the number density at
redshift zero n0, we use a range of values of n0 = (10�2�
10�3) h3Mpc�3.

In a couple of examples we will make forecast without
the theoretical errors. In these cases it is important to
specify what is kmax that is used. Our choice is

kmax(z) = 0.2 hMpc�1

✓
D+(z)

D+(0)

◆�4/3

. (48)

This coincides with the usual choice of kmax =
0.2 hMpc�1 at redshift zero as the scale where the per-
turbation theory breaks down. The time dependence is
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FIG. 3: One sigma error bar on the neutrino mass from a
galaxy survey up to z

max

= 2 as a function of k
max

. The two
horizontal lines correspond toM⌫ = 60 meV which is the min-
imal mass and M⌫ = 20 meV which roughly corresponds to a
3� detection. The solid and dashed lines are constraints with-
out marginalization over nuisance parameters, coming from
linear and one-loop power spectrum respectively with corre-
sponding theoretical errors. The dot-dashed line is the ideal
case with no theoretical errors. The dotted line is the con-
straint with marginalization over the EFT and bias param-
eters, combining the one-loop power spectrum and tree-level
bispectrum and accounting for the theoretical errors. In all
cases where the theoretical error is included, the constraints
saturate at some k

max

. The constraint using the one-loop
power spectrum is roughly equivalent to the ideal case with
no theoretical error and shot noise n ⇡ 10�4 h3Mpc�3.

chosen to mach the evolution of the nonlinear scale for a
scaling universe with n = �1.5.

For forecasts which include the theoretical error, kmax

is automatically determined as the point at which the
signal stops to grow. In order to avoid checking this
condition at each step, we will always use kmax given by
Eq. (48). We have checked that in all our examples the
signal saturates below kmax = 0.2 hMpc�1.

For all our forecasts we use a sky fraction of fsky = 0.5.

III. RESULTS

In this section we apply the method described above to
see how much the theoretical error degrades the con-
straints and what are the realistic values of the sum of
neutrino mass and primordial NG that one can hope to
get from future surveys.
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FIG. 9: Relative error and amplitude of various terms com-
pared to the deflection power spectrum. The 1-loop and 2-
loop errors are calculated using ✏ = 0.05.

and temperature measurements. For currently ongoing
and future polarization experiments with high sensitiv-
ity, the dominant (minimal variance) contribution comes
from the correlations between primordial E-modes and
the B-modes generated by gravitational lensing of the
primordial E-modes.

In Fig. 9 we show the relative contribution of di↵erent
terms to the power spectrum. The noise is calculated
for two di↵erent classes of experiments. For the stage III
(S3) type experiment we use the following parameters

fsky = 0.5 , ✓ = 1 arcmin , �T = 8 µK arcmin ,
(61)

while the stage IV (S4) type experiment is characterized
by (see for example [33])

fsky = 0.5 , ✓ = 3 arcmin , �T = 1 µK arcmin .
(62)

On large scales (low-l) the cosmic variance dominates,
whereas on small scales (high-l) the instrumental noise
dominates. This leaves only a fairly small window, where
the percent level e↵ects exceed the observational error
bars. The minimal neutrino mass M⌫ = 60 meV has a
2% e↵ect and is strongly degenerate with the amplitude
of the power spectrum over the range where its signal
exceeds the error bars. The one-loop theoretical error
has a similar size for the relevant scales, while the two-
loop error is significantly smaller.

It is important to stress that the contribution of the
stochastic term to the theoretical error is small compared
to the instrumental noise. This is important for two
reasons. Firstly this means that using the perturbation

�A[%] Lin✏=0.05 1L✏=0.05 Lin✏=0.1 1L✏=0.1

1.0 73 meV 64 meV 80 meV 65 meV
0.5 48 meV 37 meV 57 meV 38 meV
0.1 35 meV 20 meV 46 meV 22 meV

TABLE I: 1� errors for the fiducial sum of neutrino masses
M⌫ = 60 meV for a S3 like experiment.

�A[%] Lin✏=0.05 1L✏=0.05 Lin✏=0.1 1L✏=0.1

1.0 72 meV 62 meV 79 meV 64 meV
0.5 45 meV 35 meV 55 meV 37 meV
0.1 32 meV 18 meV 43 meV 20 meV

TABLE II: 1� errors for the fiducial sum of neutrino masses
M⌫ = 60 meV for a S4 like experiment.

theory it is possible to further reduce the error. Given
the di↵erence of the one-loop and two-loop envelopes, it
is reasonable to expect that the error for the two-loop
power spectrum is significantly smaller than the noise of
both S3 and S4 experiments. In that regime the theo-
retical error only slightly changes the usual forecasts (see
for instance [33]). The second reason is that the size of
the stochastic contribution can be used to estimate the
e↵ects of baryons on the lensing potential. The contri-
bution of baryons on large scales can be captured in the
EFT framework [34], but on small scales it is beyond
the reach of perturbation theory. Given the smallness of
the dark matter stochastic term, we do not expect the
baryons to contribute significantly to the theoretical er-
ror.

B. Results

Once the model, the theoretical error and the noise for
the power spectrum are known, it is straightforward to do
the forecast including the theoretical uncertainties. The
set of parameters we use is

p = {M⌫ , A,Rp} , (63)

with the following fiducial values

p0 = {60 meV, 1, 1 h�1Mpc} . (64)

In Tab. I and Tab. II we summarize our results. We
give the 1� errors on the minimal neutrino mass M⌫ =

- Lin
non marg. 1L

non marg. Ideal
S3✏=0.05 35 meV 17 meV 15 meV
S3✏=0.10 46 meV 20 meV 15 meV
S4✏=0.05 31 meV 14 meV 8 meV
S4✏=0.10 43 meV 17 meV 8 meV

TABLE III: 1� errors for the fiducial sum of neutrino masses
M⌫ = 60 meV for a S4 like experiment.

Theoretical errors & neutrino masses
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FIG. 7: One sigma error bar on f loc.
NL as a function of the maximal redshift zmax. Two horizontal lines correspond to f loc.

NL = 5
(the current strongest bound from the CMB) and f loc.

NL = 1 which is an interesting theoretical threshold. Each panel shows
the constraints with and without marginalization over the EFT and bias parameters. Di↵erent lines correspond to di↵erent
combinations of the tree-level and the one-loop bispectrum and corresponding errors. The e↵ects of the marginalization are
minimal, given that the local shape is orthogonal to gravitational contributions. We also plot as a reference a line for the ideal
case of no theoretical error and no marginalization.

the theoretical error and we do not marginalize over b1.
For example, the choice of R0 = 3 h�1Mpc and the same
kmax as before leads to �(f eq.

NL) = 12 at redshift zmax =
1.5. This should be compared to the ideal case from the
bispectrum analysis at Fig. 6. Obviously, the bispectrum
constraints are stronger.

The result strongly depends on the choice of R0. The
constraint on equilateral NG naively scales as �(f eq.

NL) ⇠
R�2

0 . Choosing a larger R0 (which corresponds to larger
haloes) seems to reduce the error significantly. However,
at the same time, the value kmax has to be smaller. In
order to stay in the perturbative regime, we cannot use
the modes with wavelengths shorter than the size of the
halo. Therefore kmax < R�1

0 , and higher R0 leads to
smaller number of modes.

The constraints are further degraded by marginalizing
over other parameters and including the theoretical er-
ror. The scale dependence of �b1(k) is not protected
by symmetries and it is degenerate with loop and higher
derivative corrections. Indeed, for large k the transfer
function scales as T (k) ⇠ k�2 log k. For example, even
a simple extension of the model including the one-loop
contributions proportional to k2

Pg(k, z) = (b1 +�b1(k))
2P (k, z)(1 +R2

pk
2) , (51)

degrades the constraints on f eq.
NL significantly, after

marginalization over b1 and Rp. For example, at red-
shift zmax = 1.5, the constraints are �(f eq.

NL) ⇡ 800 and
�(f eq.

NL) ⇡ 450 for the linear and the one-loop power spec-
trum respectively. The full model for the power spec-
trum, once other parameters are included, leads to even
worse constraints. In order to get results competitive
with the bispectrum analysis, one would have to use

R0 ⇡ 10 h�1Mpc with the same kmax.
Using the scale dependent bias and perfect knowledge

of the power spectrum up to k = 0.2 hMpc�1, [31] fore-
casted constraints of �(f eq.

NL) ⇠ 7 for zmax = 1.5 and
marginalizing over bias parameters. For reasons we ex-
plained here, we believe that this number is optimistic.
Given the importance of the question, this analysis re-
quires further investigation.

C. Local NG

The issues with the theoretical error we discussed so far in
principle apply to local NG too. However, the prospects
of constraining local NG from the LSS are much brighter.
This is possible thanks to a number of nonperturbative
results, based on the equivalence principle, which allow
us to use information even from the nonlinear regime of
LSS. We briefly describe two ways to measure f loc.

NL and
check whether from the bispectrum alone one can reach
the theoretically interesting target of f loc.

NL ⇠ 1.

Bispectrum.— In the presence of the local NG the
squeezed limit bispectrum scales as

B(q, k, k0)|q!0 ⇠ P (q)P (k) · 3f
loc.
NL ⌦m

D+(0)

H2
0

q2
. (52)

This is a result of perturbation theory, but similarly to
the scale dependent bias, this shape of the squeezed limit
of the bispectrum is protected by the equivalence princi-
ple. Including biased tracers or going beyond the nonlin-
ear scale for the short modes cannot generate the char-
acteristic 1/q2 scaling.
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FIG. 6: One sigma error bar on f eq.
NL as a function of the maximal redshift zmax. Two horizontal lines correspond to f eq.

NL = 40
(the current strongest bound from the CMB) and f eq.

NL = 10. Each panel shows the constraints with and without marginalization
over the EFT and bias parameters. Di↵erent lines correspond to di↵erent combinations of the tree-level and the one-loop power
spectrum and bispectrum. As a reference we also plot a line for the ideal case with no theoretical error and no marginalization.

are the most important for the neutrino mass, one should
have relative errors smaller than 0.1 � 0.5% (depending
on the redshift) which seems quite challenging. Other
parameters, such as b2, bG

2

or Rp, require precision of
1� 10%.

B. Equilateral non-Gaussianities

Let us now consider the constraints on primordial NG
of equilateral shape. Our pNG constraints are solely ob-
tained from the shape dependence of the tree level bis-
pectrum and the power spectrum will be used to break
degeneracies with bias parameters. We will note on ex-
plicit scale dependent bias at the end of this section.

Bispectrum.—In Fig. 6 we plot �(f eq.
NL) as a function of

zmax for di↵erent galaxy abundance scenarios. In the
ideal case, with neither theoretical errors nor marginal-
ization, f eq.

NL ⇠ 1 can be reached at high redshift. This
means that in principle there are enough modes in the
perturbative regime. In practice, the theoretical error
and marginalization degrade the constraints significantly.
Including the theoretical errors only changes �(f eq.

NL)
by a factor of 3 with the one-loop bispectrum and an ad-
ditional factor of 3 with the tree-level bispectrum. Notice
that, as in the case of neutrinos, there is a large di↵erence
between the results from the tree-level and the one-loop
bispectrum. This is due to the fact that including higher
loops increases kmax and reduces the error for k < kmax.
Marginalization degrades the constraints by additional

factor of few. This is not surprising given that the grav-
itational contributions are not very orthogonal to the
equilateral shape. With our simple model for the one-
loop bispectrum of biased tracers, the current Planck

limits can be reached with a survey that would map the
distribution of galaxies up to redshift z ⇠ 1.5. With a
more realistic model which will contain more bias pa-
rameters, the results are expected to get weaker. Going
to higher redshifts, our analysis indicates that reaching
f eq.
NL ⇠ 10 will be very challenging.

Scale dependent bias.— Equilateral NG do not a↵ect only
the bispectrum. They can also contribute to the power
spectrum through a scale dependent bias of the form

�b1(k) ⇡ 9(b1 � 1)f eq.
NL · ⌦m�c

H2
0R

2(z)

D+(z)T (k)
. (49)

(This form can be obtained by taking the squeezed limit
k1 ⌧ k2,3 of (36) as a correction to the power of short
scale modes k2,3 with the characteristic size R(z), the
Lagrangian size of objects observed at redshift z. b1 �
1 and �c = 1.686 typically appear in the simplest halo
models that relate the change in the power to the bias
parameters [30].) We choose the same time dependence
as for the counter terms in the power spectrum: R(z) =
R0D+(z)/D+(0). The power spectrum is modified in the
following way

Pg(k, z) = (b1 +�b1(k))
2P (k, z) , (50)

and one can put constraints on f eq.
NL measuring its shape

carefully. However, the amplitude of �b1(k) is very
small, typically R2H2 ⇠ 10�6. Note that compared to
the similar term in the bispectrum, the e↵ect of the scale
dependent bias at some scale k is R2k2 times smaller. For
perturbative scales Rk < 1, and we expect weaker limits
on f eq.

NL than what we get from the three-point function.
To test this expectation we do a simple forecast using

just the model described by Eq. (50). We do not include

Theoretical errors & non-Gaussianity

2

to some arbitrarily chosen scale kNL. Theoretical errors
e↵ectively restrict the range of useful modes to those for
which the signal dominates over the theoretical uncer-
tainty. In this way the realistic kmax can be surprisingly
lower than kNL and this reduction of the number modes
leads to bigger uncertainties on inferred parameters.

We will describe in detail how to consistently calculate
the Fisher matrix including the theoretical uncertainties.
We will apply this general framework to measurements
of the sum of neutrino masses and primordial NG (for
a similar earlier study for the case of neutrino mass see
[11]). Obtaining realistic and very precise forecasts, par-
ticularly for very high redshift surveys, is beyond the
scope of this paper. Our primary goal is to study the
e↵ect of theoretical uncertainties on the amount of use-
ful information in a given volume. We will therefore use
simple analytical models whenever possible and assume
ideal surveys. In this sense our final results are opti-
mistic, but nevertheless give a very good estimate of how
much theoretical errors degrade the constraints.

Before moving to the more systematic treatment, in
the rest of this section we motivate the basic idea in the
example of equilateral NG.

A. Example of Equilateral NG

Primordial NG are important observables because they
contain information about the very early phases of cos-
mic evolution. The current upper bounds on the most
interesting equilateral and local shapes are [12]

f loc.
NL = 0.8± 5.0 , f eq.

NL = �4± 43 , (68% CL) . (1)

Even though these upper limits are quite strong, a theo-
retically interesting threshold is fNL ⇠ 1. Any detection
of non-zero NG would be very exciting, but even the ob-
servation that both f loc.

NL and f eq.
NL are smaller than one

would be very informative. It would favor single-field and
slow-roll inflation and practically rule out a large class of
inflationary models with modified kinetic term or more
than one light field during inflation. Although futuris-
tic experiments including polarization have a potential
to improve the current constraints almost by a factor of
2 (see for example [13]), it will be hard to reach fNL ⇠ 1
from the CMB alone.

The other way to detect primordial NG is through its
imprint on the bispectrum of density fluctuations in the
late universe. The full bispectrum B(k1,k2,k3) of the
density contrast � is a sum of the primordial part and
the one generated by the gravitational interactions. For
simplicity, let us focus on redshift z = 0 and assume that
all momenta in the bispectrum are of the same magnitude
k. The primordial contribution is approximately

Beq.(k) ⇠ P 2(k) · f eq.
NL

9H2
0⌦m

k2T (k)D+(0)
, (2)

where T (k) is the transfer function, H0 the present day
value of the Hubble constant, ⌦m the matter density pa-

rameter and D+(z) the perturbation growth factor. The
gravitational part can be calculated using perturbation
theory. If one calculates the bispectrum including (l� 1)
loops, the result can be schematically written as

Bgrav.(k) ⇠ P 2(k) [“(l � 1)�loop” + E(l, k)] , (3)

where the second term is the theoretical error. As we
discussed, the typical size of this error is E(l, k) =
O((k/kNL)(3+n)l). Notice that for the leading tree-level
bispectrum the first term in square brackets is O(1).
From the previous expressions it is clear that while the

theoretical error grows, the primordial part decays with
k. We are interested in the scale kmax for which they
become comparable. This scale sets the range of modes
that we are allowed to use in the analysis:

f eq.
NL

9H2
0⌦m

k2maxT (kmax)D+(0)
⇠

✓
kmax

kNL

◆(3+n)l

. (4)

For example, if we calculate the 1-loop bispectrum (cor-
responding to l = 2 for the error), for a target of f eq.

NL ⇠ 1
it turns out that kmax = 0.03 hMpc�1. This is quite
smaller than the naive cuto↵ kNL and deep in the per-
turbative regime. On second thought, this result should
not be so surprising. For the given kmax and f eq.

NL ⇠ 1 the
relative size of primordial part is

f eq.
NL

9H2
0⌦m

k2maxT (kmax)D+(0)
⇠ O(10�3) , (5)

which should be compared with the O(1) gravitational
contribution in Eq. (3). To get this precision on the
gravitational bispectrum one has to stay far away from
the nonlinear scale. This precision is an order of mag-
nitude smaller than the usual theoretical target, which
is O(1%). This is true for perturbation theory as well
as for simulations. In order to be useful for detection
of small equilateral NG, the theoretical models have to
significantly improve.
So far we were just comparing primordial and grav-

itational signal to estimate kmax. It is interesting to
ask whether f eq.

NL ⇠ 1 is even achievable with kmax =
0.03 h/Mpc�1 and what kind of survey volume is needed.
To find the answer we have to calculate the signal-to-
noise, which is given by

✓
S

N

◆2

=
V 2

(2⇡)6

Z
d3k1d

3k2d
3k3

Beq.(k1,k2,k3)2

P (k1)P (k2)P (k3)

⇡ V

(2⇡)3
k3maxf

eq.
NL

2A · O(1) ,

(6)

where A = 2.215 · 10�9 is the normalization of the power
spectrum. This can be rewritten as �(f eq.

NL) ⇠ 2·104/pN ,
where N = (kmax/kmin)3 is the number of modes. With
NG of order unity we naively get kmin ⇠ 10�3kmax which,
for the above estimate of kmax, corresponds to unobserv-
able super-horizon scales.

Improvement seems likely

Improvement looks very difficult

Baldauf, Mirbabayi, Simonovic & MZ 1602.00674  
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ing. We then extended the results in to include local averaging of the Ðelds ; for n \ [2, the smoothed one-loopSF1
correction is reduced by more than a factor of 2 from its unsmoothed value, which shows the importance of smoothing in
determining the value of one-loop corrections. The results for top-hat smoothing compare well with the corresponding
measurements in numerical simulations, providing a description of most of the transition from the tree-level value at large
scales (p ] 0) to the nonlinear regime where attains an approximate constant value in accord with expectations based onS

3stable clustering.
The results presented in this work suggest future directions in which one can improve the current understanding of the

transition to the nonlinear regime. One obvious extension would be to consider spectral indices n º [1, to generalize the
present results for arbitrary scale-free spectra. This would involve taking into account the e†ects of small-scale Ñuctuations on
the evolution of large-scale modes in a way that absorbs the divergences that appear in the present formalism
(renormalization), and therefore recovers self-similar evolution for statistical quantities such as the power spectrum and
bispectrum. This would lead to a better understanding of the role of previrialization in determining the structure of the
correlation functions on intermediate scales. We hope to come back to this point in the near future.

Since realistic power spectra are not scale free, an important, further step is to consider initial conditions such as those given
by the cold dark matter (CDM) model and its variants. Since these models have e†ective spectral indices in the range

to [1 over the scales of interest, we expect that they will show similar features to the ones we presented here.n
eff

B[2
Nevertheless, explicit calculations are required in order to assess the e†ect of one-loop corrections in the determination of bias
from the conÐguration dependence of the bispectrum Similarly, recent claims by & Bo� rner that there is(Fry 1994). Jing (1996)
a discrepancy in the three-point function between the tree-level perturbation theory and the numerical simulations for CDM
models may be addressed properly by taking into account one-loop corrections. As we showed in this work, these can be
nonnegligible even on weakly nonlinear scales, depending on the initial spectrum. Work is in progress on these issues

et al.(Scoccimarro 1997).
There is clearly much more work to do in order to understand nonlinear clustering in an expanding universe. However, the

interplay between perturbation theory and N-body simulations suggests that there are three distinct regimes that describe its
most important statistical features. At the largest scales, tree-level perturbation theory is well established as providing a good
description of the correlation functions and the p ] 0 limit of the parameters In the stronglyS

p
(Fry 1984 ; Bernardeau 1994).

nonlinear regime, numerical simulations et al & Dodds Mo, & White(Hamilton 1991 ; Peacock 1994 ; Suto 1993 ; Jain, 1995 ;
et al. have shown reasonable agreement with the stable-clustering hypothesis, although there areColombi 1996 ; Jain 1997)

still large uncertainties due to limitations in dynamic range. In this regime, there is as yet no compelling analytic model that
makes predictions in good agreement with the numerical results, except probably for the two-point function & Jain(Sheth

In particular, there is no understanding of the hierarchical structure of the parameters, which seem to reach a plateau1996). S
pin the highly nonlinear regime, Finally, the results presented in this work suggest that the third regime, theS

p
B constant.

transition to the nonlinear regime, with p B 1, can be understood by the one-loop perturbation theory for models without
excessive small-scale power. This is clearly promising and deserves further investigation.

It is a pleasure to thank Josh Frieman, who has guided me in the research described in this work. I am indebted to Stephane
Colombi for providing me with the results of his measurements in numerical simulations used in this paper and for many
discussions on this subject. Special thanks are due to Jim Fry, with whom I cross-checked my numerical results on the
one-loop bispectrum. I am also grateful to R. Cebral, D. Chung, L. Kadano†, S. Meyer, Z. Protogeros, and M. Turner for
comments and discussions. I thank the anonymous referee for a useful report that helped to improve the presentation of this
paper. Financial support by the DOE at Chicago and Fermilab, and by NASA grant NAG 5-2788 at Fermilab, is particularly
acknowledged.

APPENDIX A

DIMENSIONAL REGULARIZATION

To obtain the behavior of the one-loop p-point spectra for n \ [1, one can use dimensional regularization (see, e.g., Collins
to simplify considerably the calculations. Since we are interested in the limit all the integrals run from 0 to O,1984) k

c
] O,

and divergences are regulated by changing the dimensionality d of space : we set d \ 3 ] e and expand in e > 1. For the
bispectrum, we need the following one-loop three-point integral :

J(l
1
, l

2
, l

3
) 4

P ddq

(q2)l1[(k
1
[ q)2]l2[(k

2
[ q)2]l3

. (A1)

When one of the indices vanishes, e.g., this reduces to the standard formula for dimensional-regularized, two-pointl
3
\ 0,

integrals (Smirnov 1991) :

J(l
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, l

2
, 0) \
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)!(d [ l
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nd@2k
1
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The integral appears in triangle diagrams for massless particles in quantum Ðeld theory and can be evaluated forJ(l
1
, l

2
, l

3
)

arbitrary values of its parameters in terms of the hypergeometric functions of two variables The result is(Davydychev 1992).
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where and is ApellÏs hypergeometric function of twol
123
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4variables, with the series expansion
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where denotes the Pochhammer symbol. When the spectral index is n \ [2, the hypergeometric functions(a)
i
4 !(a ] i)/!(a)

reduce to polynomials in their variables because of the following useful property for [a, a positive integer :

F
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When using divergences appear as poles in the gamma functions ; these can be handled by the followingequation (A3),
expansion (n \ 0, 1, 2, . . . and e ] 0) :

!([n ] e) \ ([1)n
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where t(x) 4 d ln !(x)/dx and
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with . . . and t@(1)\ n2/6.t(1)\ [c
e
\ [0.577216

APPENDIX B

ZELDOVICH APPROXIMATION

In this approximation & Zeldovich the motion of each particle is given by its initial(Zeldovich 1970 ; Shandarin 1989),
Lagrangian displacement. In Eulerian space, this is equivalent to replacing the Poisson equation by the Ansatz &(Munshi
Starobinski 1994) :

¿(x, q) \ [
2

3H(q) +'(x, q) , (B1)

which is the relation between velocity and gravitational potential valid in linear theory. The important point about the ZA is
that a small perturbation in Lagrangian Ñuid element paths carries a large amount of nonlinear information about the
corresponding Eulerian quantities, since the Lagrangian picture is intrinsically nonlinear in the density Ðeld. This leads to
nonzero Eulerian perturbation theory kernels at every order. The ZA works reasonably well as long as streamlines of Ñows do
not cross each other. However, multistreaming develops at the location of pancakes, leading to the breakdown of the ZA

& Zeldovich The equations of motion in Fourier space are(Shandarin 1989).
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The End


