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: : - dark ener
Accelerated expansion of the Universe == &7

- modified gravity

Most of the models involve one or more scalar fields, which experience self-interactions

and may also interact with matter.

==  “Fifth force” that has not been seen in local gravity experiments !

- the scalar field does not interact with baryonic matter components

- there is a mechanism to suppress the fifth force in local environments

==  “Screening” mechanisms associated with non-linearities of the system.



Definitions of some models



a) f(R) models

2
M5,

Add a function of the Ricci scalar, f(R), g — /d4le V=g [
2

(R+ f(R)) + L,
to the Einstein-Hilbert action:

2 +1
fROC Rg

f(R) = —2A — — n=1, |fr,|<107° Solar System constraints
167G a’?
. . . . 2\11 — 25 . (5
= Modified Poisson equation: V 5 a“op o R

2
Constraint equation:  V°0fr = %[6}% — 81G6p] _df , Rt

(quasi-static approximation)




b) Scalar field models

Dilaton models or symmetron models

M3 1
Scalar-tensor theories S = /d4a: V=g [THR — §(V90)2 — V(g@)] + /d4x vV =9 Lo (¥, G
Juv = A g,uu
Jordan-frame metric Einstein-frame metric
= Modified Poisson equation (5th force): U=Uyn+ Wy
V2\I/N :47rga25,0 W4 :(32(14—14_1) (Ale)
2

. . S,V dA

Klein-Gordon eq.: SVp= i +pd¢

(quasi-static approximation)



Perturbative approach



|) Use the quasi-static approximation, which applies to small scales dominated by spatial gradients

= > Obtain a non-linear equation that relates the new field to the matter density

F(OR,0p) =0 F(dp,6p) =0

This allows one to eventually go back to the standard LCDM formalism
(i.e., we can eliminate the new degree of freedom).

2) Solve this equation through a perturbative expansion over the nonlinear density fluctuation

SR(k) = Z/dkl...dkn op(ki + ... + k) hn(ky, ... k) 0p(k1)...0p(ky,)

1

5p(k) = Z/dkl...dkn Sp(ki 4 ... + k) hn(ki, ..., k) 6p(ky)...0p(ks,)
n=1

3) Obtain the expression of the full “gravitational” potential (Newton+5th force)

(k) = Z/dkl...dkn op(ki 4 ... + k) Hp(kq,....ky) 6p(k1)...0p(ky)
n=1



a) f(R) models

2

Y Constraint equation: V35 fr = %[5}% — 81Gdp) n>1: #knla)=H>"" 22;5 (R)
Vv? _op L 3H* g, n
(1_W) .0R = M—I%IJF;WV (6R)
2
Yx Modified Poisson equation: V2P = 16§ga25p— =OR = U (dp)
b) Scalar field models  (Dilaton or symmetrons)
c? av dA d" A
w Klein-Gordon eq.: a—2V290 = o TP nzli fale) = Mg 22 (@)
022 w0 = TE | ) + )
V_2 2 s — Bop 52 op 5+ Z Kn+1 /3n+15,0 (6p)"
a? ? c2 Mpy 02]\41%l My 1 CQMIQIle n!
Y¥ Modified Poisson equation (5th force): ¥ = Uy + Uy Uy =c*(A-A)




4) Write the equations of motion (in the single-stream

00
__|_V.

approx.), with the "~ 'new gravitational potential”

Continuity eq.: o7 (1+0)v] =0 (K-mouflage models)
v ov din A B
Euler eq.: gT—F(V'V)V—I—HV/V\IJ 87_+(V-V)V—|—<H—I—/d7_ )Vvqlx
5th force friction 5th force
This can be written in a more concise form as:  O(z,2') - ¥(2) = >~ K (zi 21, .., 3) - ¥(21)...9h(2n)
n=2
2-component vector: ¢ = ( —(V(-Sv)/a ) time coordinate: 7 = In(a) r=(k,n,1i)

Linear part:  O(z,2") = 6p(n'—n) dp(k'—k)

modified-gravity impact at linear order

Equal-time kernels:

K3 =0p(m —n)---0p(nn —m)op(k1 + .. + Kn) Vi, o, (K1, - Knim)

~

new time and scale dependence



5) Linear theory

Y f(R) and dilaton models:

Y K-mouflage models:
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FIG. 1: Linear growing mode D (k, ¢) normalized to the scale
factor a(t) for four (n,mo) models. In each case we show
the results for wavenumbers k = 1hMpc ™" (lower curve) and
k = 5hMpc~" (upper curve), as a function of a(t). These two
scales are in the non-linear regime and have only been chosen
to exemplify the type of effects obtained in modified gravity.

Linear growing mode as
a function of time

scale-dependence of the linear modes
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FIG. 2: Linear decaying mode D_ (k, t) normalized to a(t) />
for four (n,mo) models. In each case we show the results
for wavenumbers k = 1hMpc™* (upper curve) and 5hAMpc™*
(lower curve), as a function of a(t). These two scales are in
the non-linear regime and have only been chosen to exemplify
the type of effects obtained in modified gravity.
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FIG. 5: Linear growth rate f(k,z) = 0lnDy/dIlna for
wavenumber k = 1hMpc™ !, for four (n,mo) models.

Linear growth rate as
a function of time



6) One-loop power spectrum

As in the LCDM case, we can write the solution of the equation of motion as a perturbative expansion

over powers of the linear growing mode: -
P(x) =Y ™ (x), with ™ o (¢r)"
n=1
v = - W@ =
. \i - white circles: linear solution
Diagrams: - black dots: vertices

f<<j - lines with an arrow: retarded propagator
v o2 "

new cubic vertex

This gives in turns the density 2-pt correlation function, or the density power spectrum:

P(k) :Ptree(k)+Plloop<k)+--- Ptree:PL Plloop:P22‘|‘P31‘|‘P3\I_{

DiagraIIIS:
y
P31 =8 *@ P31= 6 < >



Relative deviations from LCDM for the power spectrum P(k)

a) f(R) models

f(R), up to one-loop

“no-chameleon” simulations /\  (linear modification of gravity: €)

“with-chameleon” simulations []  (nonlinear modification
. . S
of gravity: €, V4, i)

linear power spectrum
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FIG. 3: Relative deviation from A-CDM of the power spec-
trum in f(R) theories, at redshift z = 0, for n = 1 and
fry = —10*,-107°, and —107%. In each case, the trian-
gles and the squares are the results of the “no-chameleon” and
“with-chameleon” simulations from [25], respectively. We plot
the relative deviation of the linear power (solid line), of the
one-loop power without “chameleon” effect (73,11 =73.1,11 =
0) (dashed line), and with lowest-order “chameleon” effect
(’)’5;171 ?é 0, "}’5;17171 = 0) (dotted line).

+ Including the quadratic vertex V2,11 gives the first sign of the chameleon effect.

+ The cubic vertex makes no significant change.

+ Going to |-loop does not increase much the range of scales.



b) Scalar field models

(P-PAcom)Pacom
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+ Including the quadratic vertex gives the first sign of the screening effect.

+ This can “over-correct” the deviation from LCDM and give a power spectrum that is
smaller than the LCDM one. (The linear term speeds up the collapse, but the quadratic
term slows down and would halt the collapse before reaching high densities.)

+ The cubic vertex corrects for the “over-screening”.

e===2>> gradual convergence of higher orders on perturbative scales

+ Going to |-loop increases somewhat the range of scales.



bad convergence
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+ For some models, going up to the cubic vertex can degrade the analytical predictions !

==> bad convergence of higher orders

+ This corresponds to models where the coupling functions are singular.

B(a) = fo [1 _ (%)3r m(a) = my [1 _ (%)3]7@ n=0.25 m=0.5



Spherical collapse



To go beyond |-loop standard perturbation theory, we wish to combine the perturbative

expansion with a halo model.We need to take into account the impact of modified gravity
on the halo mass function

== study how the spherical collapse is modified

Sth force: = _2Yn _ O¥a (for f(R) and dilaton models)
or or
. . . _ T(t) ) _ 3M 1/3 B B e
normalized radius y(t): y(t) = oo ith 7= (4@0) , ylt=0)=1 S(<r)=y 1
%y  1—3wQq 0y O, 3 =30y OV 4
on? * 2 on * 2 (v = 1) 8tGpr Or
in GR, all shells evolve independently the Sth force depends on the profile
before shell crossing ==> all shells are coupled

Simplifying approximation: use an ansatz for the density profile, parameterized by the density contrast
of the mass-shell of interest:

Sy = 20 [P w0

2
O'xM Vs VM

typical profile of rare events
(neglecting nonlinear distortions)




a) f(R) models

Normalized fluctuation of the Ricci scalar: OR =87Gp a(x)
eq. of motion for the shell M: d;?;éw + - 32dee dgy + Q7m (y;f’ —1)ym = _Q+yM /OxM d;;2 (0 — )
constraint eq. for the new field: % + %ZZ - Qmo(l(T;fLQZSnga—?’ (23)2 = a’mg <Qm0a;;fjijs%; 4QAO>n+2 (o — 6)
4+ Large scales: weak-field (linear) regime, % —0, a—94 » GR
4+ High density: strong-field (nonlinear) regime, 0 — 00, a—9 » GR

=:> chameleon mechanism due to the nonlinearity.



Because of the 5th force, the linear density threshold to reach a given nonlinear density contrast
(200) is smaller than for LCDM.

155 |
: ~ 1.5 -
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nl. W,

f(R), z=0

10‘10 16” 1612 1613 1614 10"
Mh'M,] .
Chameleon effect is greater for large

masses, where nonlinearities can

FIG. 6: Linear density threshold (M), associated with a overcome Spatia| gradients

nonlinear density contrast § = 200, for f(R) theories at z = 0.
The dotted lines (w.f.) correspond to the weak-field limit

(108) and the solid lines (n.l.) to the fully nonlinear constraint
(106).

+ The linear density threshold becomes mass-dependent: 6, (M)

+ The deviation from LCDM diminishes at high mass.

4+ The nonlinear chameleon effect decreases the deviation from LCDM.
It is more efficient for large masses.



b) Scalar field models

“Normalized” scalar field:

eq. of motion for the shell M:

a(z) = alp(z)]
d®ypr 1 — 3wQ4e dyar N Q_m ( 3 1) B —90,,a32yr O
dn? 2 dn o \m M m2atxy  Or

) o 2da dln 3, dlnm, 4 do\ 2 mgéo/l a’
Klein-Gordon €q.. @ ;% + dor — 2 do - a] <%> ~ T3, [1 +0— 5]
d
4+ Large scales: weak-field (linear) regime, ——0, a— a(l+6)"Y/3 === GR
T

4+ High density: strong-field (nonlinear) regime, 0 — 0o, o — ad~
. 32
dilaton models: @ 0
M2
symmetron models:  — Qg

—

screening mechanism due to the nonlinearity.

1/3

= GR



Because of the 5th force, the linear density threshold to reach a given nonlinear density contrast

(200) is smaller than for LCDM.

dilaton models

1.65

symmetron models

16 L ACDM

ACDM

1.55
1.5 ¢

nonlinear
screening

1.45

TTT > weak-field approx. €=---._ |

dilaton A, z=0 |

symmetron A, z=0

M A M]

+ Again, nonlinearities (screening) decrease the deviation from GR.

10° 10" 10" 10" 10" 10" 10"

10" 10" 10" 10" 10"

M AT M]

+ The rate of convergence to GR at high mass depends on the model (very efficient for

symmetron, very nonlinear models).

+ Contrary to f(R) models, at low mass we do not converge to weak-field prediction but to GR.



c) K-mouflage models

a+a dt

Trajectories in physical coordinates: I+

dln/if i@ adlnA
dt

) r — —VT(\IJN + IHA)

the motions of different mass shells are decoupled,
> P

Scale-independence as in LCDM (before shell-crossing)

linear density contrast threshold: ©




d) Halo mass function

5C<l 4>2 . -1
M pm (M
Use the Press-Schechter scaling: n(M)d— — fm f(v) djy with = ((Sj(( ))

Relative deviation of the mass function

s g

J

O O +r

[ T (|
= O » O

Oa 03 03 Oa

———————

case where ¢(k,a) > 0

[H(M)_HACDM(M)J/HACDM(M)




e) Probability distribution of the density contrast

From the spherical dynamics we can also obtain the PDF of the density contrast within spherical cells,
in the weakly non-linear regime.

Introduce the cumulant generating function (Laplace transform):

O

e~ PW)/ou = (e=¥da/on) = / ds, e~ ¥9=/7% P(5,)

—1

_ o2 -1 —S[6]/ 02 -
e~ PW/7 = (det C5 % )1/ /D5L e~ SWorl/os where S0r] = yo.[0r] + % 0 - Cs,5, " 0L

On large scales, we obtain: o, —0: p(y) — ngin S[0]
L

For spherical cells, we can look for the spherical minimum (saddle-point)



‘?(6,()_ﬁCDM(dx)‘/ﬁCDM(ax)

1T T T T T1TTT

R

Probability distribution function

Relative deviation

case where

e(k,a) >0



Matter power spectrum



As in the halo model (but from a Lagrangian point of view), decompose the power spectrum as

(k) + Pia(k

“2-halo term” / \ “l-halo term”

¥

perturbative contribution

Pon(k) =~ Fau(1/k) Poers (k)

(high-k behavior improved by going
beyond standard perturbation theory)

¥

nonperturbative contribution
> dv M
Puk) = [ 1)
0 14

p(2m)°
/

halo mass function

(aM(k)2 Wk qM)2>

halo density profile

(low-k behavior solved by counterterm)



a) f(R) models Relative deviation from LCDM for P(k)

- - = “no-chameleon” simulations A\ (linear modification of gravity: € )

\ “with-chameleon” simulations [[]  (nonlinear modification

. S
of gravity: €,7;.;, i)

[P(k)-P xcom(K)/P acpm(k)
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k [h Mpc'1]

FIG. 13: Relative deviation from A-CDM of the power spec-
trum in f(R) theories, at redshift z = 0, for n = 1 and
fro = —10"*,—107°, and —107°%. In each case, the trian-
gles and the squares are the results of the “no-chameleon”
and “with-chameleon” simulations from [25], respectively. We
plot the relative deviation of the nonlinear power power spec-
trum without chameleon effect (w.f., dotted lines) and with
chameleon effect (n.l., solid lines).

+ Reasonably good agreement between simulations and analytical predictions,
from linear to mildly nonlinear scales.

+ As compared with parameterizations (PPF), the convergence to GR on small scales
is not put by hand. It is due to the chameleon mechanism.



b) Scalar field models

[P(k)-PAcom(K)IP Acom(k)

0.2

no screening, only €

dilaton A, z=0

0.15 ¢

0.1
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screening, one-loop with
quadratic & cubic vertices

Relative deviation from LCDM for P(k)

S S
V21,1 & 72:1,1,1

screening, one-loop with
. S
quadratic vertex 72:1.1

+ The impact of the nonlinear screening mechanism is greater than for the f(R) models.

+ Reasonably good agreement with simulations.

+ Underestimate at high k, could be due to the neglect of halo profile modifications.
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Bad convergence, but we can guess beforehand
the problematic cases.
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symmetron B, z=0
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Good convergence, reasonable agreement.



Conclusion

+ “Modified-gravity” models introduce a new degree of freedom (new field).

4+ Using the quasi-static approximation, we can go back to the standard framework,
defined by the matter density and velocity fields, with a modified “gravitational” potential.

4+ “Standard” perturbation theory can be generalized in a direct manner.

The main differences are: :
- new complex time and scale dependences.

- new nonlinear vertices (the egs. of motion are no longer quadratic),
which are the first signs of nonlinear screening mechanisms.

4+ The spherical collapse is more complex, because of the coupling between different shells.
Nevertheless, this can be simplified using approximate density profiles.

4+ Explicit account of nonlinear chameleon or screening mechanisms that ensure convergence to GR
in high-density environments.

4+ By combining perturbation theory and halo model (spherical collapse), one can obtain reasonably good predictions
up to mildly nonlinear scales, for models that are not too singular.

4+ Singular models lead to bad convergence of perturbative expansions and low accuracy
of analytical predictions. Fortunately, these cases can be detected before hand.

4+ To handle difficult cases, or to go beyond the quasi-static approximation, one may need
to explicitly keep track of the new scalar field in the perturbative approach ?



Supplements



Matter density power spectrum:
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BAO scales
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