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•Cosmological probe of gravity

•Model-independent approach

•Consistent modified gravity analysis

•Summary
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My personal perspective on constraining/testing gravity 
with LSS observations (focusing on RSD)



•Untested hypothesis in ΛCDM model

•Hint for cosmic acceleration

Motivation
Is GR valid on cosmological scales ?

• Systematic construction of most general scale-tensor theory
(Horndeski theory, GLPV theory, EFT approach,…)

• Various screening mechanisms that recover GR on small scales

Framework to describe modified gravity is well (too) developed :

These theoretical attempts have to be tested observationally

(Chameleon, Vainshtein, symmetron, K-mouflage, ultra-local, …)

Q



Test of GR as function of scales
BOSS: Testing Gravity with the power spectrum multipoles 3
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Figure 1. Summary of different tests of General Relativity (GR) as a function of distance scale (bottom axis) and densities (top axis).
The standard model of cosmology seems to run into problems (dark matter, dark energy) at large scales. Because these problems could
indicate a breakdown of GR we need to test GR on large scales. Two probes which can do this are redshift space distortions (RSD)
and lensing. While RSD measures the Newtonian potential Ψ, lensing measures the sum of the metric potentials Φ + Ψ. However, any
modification of gravity needs to pass the very precise tests on smaller scales (Pound & Rebka experiment Pound & Rebka 1960, Gravity
Probe A, Vessot et al. 1980, Hulse-Taylor binary pulsar Hulse & Taylor 1975, see Will 2006 for a complete list). Note that the error bars
for Gravity Probe A and the Hulse-Taylor binary pulsar are smaller than the data points in this plot. In this analysis we perform a
ΛCDM consistency test (blue data point), where we use the CMASS-DR11 power spectrum multipoles together with Planck (Ade et al.
2013a) to tests GR on scales of ∼ 30Mpc (see section 9.1).

(2006). The popular power spectrum estimator suggested
by Feldman, Kaiser & Peacock (1993) (from here on FKP
estimator) cannot be used to make angle-dependent mea-
surements in BOSS because of the plane parallel approxi-
mation that this estimator implicitly makes (see section 3
for details).

Since the power spectrum quadrupole is more sensitive
to window function effects than the more commonly used
monopole, we suggest a new way of including the window
function into the power spectrum analysis. In order to ro-
bustly constrain the RSD and AP-test parameters, we model
the anisotropic galaxy power spectrum using perturbation
theory (PT) which fairly reflects a series of recent theoretical
progresses. Our PT model accurately describes non-linear is-
sues such as gravitational evolution, mapping from real to
redshift space, and local and non-local galaxy bias. We also
perform a detailed study of possible systematic uncertain-
ties and quantify a systematic error for our parameter con-
straints. Our analysis has been done “blind”, meaning that

all model tests and the set-up of the fitting conditions are in-
vestigated using mock data and only at the final stage do we
fit the actual CMASS-DR11 measurements. The CMASS-
DR11 constraints on DV (z)/rs(zd), FAP(z) and f(z)σ8(z)
are the most precise constraints to date using this technique.

This paper is organised as follows. In section 2 we de-
scribe the BOSS CMASS-DR11 dataset. In section 3 we de-
scribe the power spectrum estimator used in our analysis
and in section 4 we describe the mock catalogues together
with the derivation of the covariance matrix. We then dis-
cuss the measurement of window function effects including
the integral constraint in section 5. In section 6 we discuss
our model for the power spectrum multipoles, together with
the modelling of the Alcock-Paczynski effect. We perform
a detailed study of possible systematic uncertainties in sec-
tion 7, followed by the data analyses in section 8. We use our
data constraints for cosmological tests in section 9 and con-
clude in section 10. The appendix gives detailed derivations
of equations used in our analysis.

c⃝ 2013 RAS, MNRAS 000, 1–30
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The Astrophysical Journal, 784:90 (27pp), 2014 April 1 Okabe et al.

Figure 5. X-ray surface brightness distribution in the 0.1–2.4 keV band from
ROSAT X-ray satellite. The contours of the mass map are overlaid with
FWHM = 8.′3, taking into account the LSS lensing model. The contour level
starts at 1σ and increases in steps of 1σ .
(A color version of this figure is available in the online journal.)

the model does not perfectly describe the full LSS lensing
effect. Three other peaks associated with the known background
objects (Table 2) are detected with the above conditions. One is
the background object “I” and two peaks are around the object
“F” (see Figure 3). These objects are likely to be groups because
the lensing signals are stronger than what is expected from the
luminosity of a single galaxy. Furthermore, there is a possibility
that background groups are accidentally superimposed with
cluster subhalos, giving a systematic bias on mass estimates
of subhalos. This point is discussed in Section 3.4.1.

Next, we measure the model-independent projected masses
(Clowe et al. 2000, see also Appendix C) for shear-selected
subhalo candidates. This measurement has several important
advantages. First, a large number of background galaxies are
available, because a projected mass within a circular aperture
radius is computed by integrating source galaxies outside the
radius. The measured projected mass is a cumulative function
of radius. Thus, this approach suppresses the random noise
relevant to the intrinsic ellipticity, compared to a tangential
distortion profile, which averages the tangential component
of all background galaxies residing in radial bins. Second,
since the measurement subtracts the background mass density

surrounding subhalos, the contribution of the main cluster
mass distribution to subhalo masses is excluded. Third, the
mass density of subhalos is expected to be close to zero
outside of the tidal radius, and the measured aperture mass
corresponds to the subhalo mass itself. If the mass density
profile follows the universal NFW profile (Navarro et al. 1996,
1997) without any truncation radii, the aperture mass is higher
than the spherical one (Okabe et al. 2010b). As expected from
tidal destruction, the radial profile of the projected mass is
saturated outside the truncation radii, rt. We measure projected
masses for all the candidates. Since the smoothing kernel for
the mass reconstructions gives rise to centroid uncertainties of
the candidates, we determine the central position by choosing
maximal lensing signals within a 8.′ × 8.′ box where the center
is aligned with the map peak position. For accurate mass
measurements of subhalos with a variety of sizes, it is important
to explore truncation radii where the projected mass profile is
saturated. We systematically compute projected mass profiles
by changing the background annulus and then statistically
determining the truncation radii. Here, the inner radius changes
from 0.′7 to 14.′5 in steps of 0.′2 and the width is fixed at 3.′. The
projected mass M2D is computed from saturated values, taking
into account the error covariance matrix. The measurement
method is detailed in Appendix C. The same analysis was
repeated for different background widths which showed that the
result does not significantly change. Mass measurements used a
considerably large number of source galaxies (4×103–2×104).
The number is comparable or less than that for main clusters at
z ∼ 0.2 (e.g., Okabe et al. 2010b) for which the background
number densities are ng ∼ 5–20 (arcmin−2). Less massive
subhalos which are detected inside more massive ones should
be excluded in order to avoid double-counting these subhalos.
We count the ith subhalo using two conditions of the radius
rt,i > rt,j and the subhalo mass M2D,i > M2D,j (i ̸= j ). The
number of candidates is then reduced from 49 to 39 using this
procedure. As mentioned above, the LSS model fails to fully
explain the lensing signals of background systems, especially on
group scales. Furthermore, since there is a possibility to detect
mass structures behind the cluster, we conservatively select the
candidates hosting spectroscopically identified member galaxies
within their truncation radii as the cluster subhalos. Having
applied these limitations, 32 peaks are identified as dark matter
subhalos. Three candidates are associated with the background
systems (Table 2). Four candidates have no optical counter:
they are located around ∼70.′ in the south-east direction and the
north-west direction, respectively.

These 32 subhalos are labeled by integers, in the order of
right ascension. The resulting subhalo masses, M2D, range
from ∼2 × 1012 h−1 M⊙ to ∼5 × 1013 h−1 M⊙ (Table 3).
As shown in Figure 6, the radial profiles of the projected mass
clearly show saturation at some outer radii. The subhalos are
widely distributed from the northeast to the southwest in the sky
(Figure 3). Interestingly, the direction connecting between the
Coma cluster and A1367 which are parts of the Coma superclus-
ter (Gregory & Thompson 1978) agrees roughly with the sub-
halo distributions. Several massive subhalos are associated with
well-known, spectroscopically identified groups in the cluster
(e.g., Mellier et al. 1988; Adami et al. 2005). Galaxies or groups
associated with subhalos are summarized with references in
Table 3. The cD galaxies, NGC 4874 and NGC 4889, are as-
sociated with subhalos “21” and “24,” respectively. The mean
mass ratio reported in this paper compared to the previous pa-
per for overlapping subhalos is ⟨Mnew/Mold⟩ = 1.02 ± 0.54.

8

Gravity on cosmological scales
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Modification to gravity
Suppose metric theory of gravity:

spacetime 
metric

In GR (subhorizon)

:  potentials�(�x), �(�x) matter fluctuations
�m(�x), �v(�x)

1
a2
�2� = 4� G �m �m

In modified gravity

�• scalar d.o.f
coupled with scalar-field eq.

appears

� � �m• relation btw.
becomes non-trivial

&

ds2 = �(1 + 2�)dt2 + a2(t) (1� 2�)d�x2

�2(���) = 0

1
a2
�2(� + �) = 8� G �m �m



Model-independent approach

Consistency 
test of GR

Phenomenological parameterization:

�k2� = 4� Ga2 µ �m �m

f(z) � d lnD+

d ln a

�̈m + 2H �̇m � 4� Ge��m = 0 (Linear)

Linear growth rate:

(�m � D+)

Coupled with energy-momentum conservation:

� {�m(z)}�

(GR : � = 0.55)

Find or search for any deviation from 
µ = � = � = 1 � = 0.55or

or�k2(� + �) = 8� Ga2 � �m �m � � �
�



Cosmological probe of gravity

•Weak lensing

•Redshift-space distortions

• ISW effect
�T

T
�

� �

BOSS anisotropic clustering 3

et al. (2012), who measured the RSD and AP simultaneously in
the BOSS CMASS DR9 sample, achieving a 15 per cent mea-
surement of growth, 2.8 per cent measurement of angular diame-
ter distance, and 4.6 per cent measurement of the expansion rate
at z = 0.57. Using these estimates Samushia et al. (2013) derived
strong constraints on modified theories of gravity (MG) and DE
model parameters. In this paper we perform a similar analysis on
the CMASS DR11 sample, which covers roughly three times the
volume of DR9.

This paper is organised as follows. In section 2 we describe
the data used in the analysis. Section 3 explains how the two-
dimensional correlation function is estimated from the data. Sec-
tion 4 shows how we derive the estimates of the covariance ma-
trix for our measurements. In section 5 we describe the theoretical
model used to fit the data. Section 6 presents and discusses our
main results – the estimates of growth rate, distance-redshift rela-
tionship and the expansion rate from the measurements. Section 7
uses these estimates to constrain parameters in the ⇤CDM model
assuming General Relativity (⇤CDM-GR) and possible deviations
from this standard model. We conclude and discuss our results in
section 8.

Our measurements require the adoption of a cosmological
model in order to convert angles and redshifts into comoving dis-
tances. As in Anderson et al. (2013) we adopt a spatially-flat
⇤CDM cosmology with ⌦m = 0.274 and h = 0.7 for this purpose.
For ease of comparison across analyses, we follow Anderson et al.
(2013) and also report our distance constraints relative to a model
with ⌦m = 0.274, h = 0.7, and ⌦bh2 = 0.0224, for which the BAO
scale rd = 149.31 Mpc.

2 THE DATA

The SDSS-III project (Eisenstein et al. 2011) uses a dedicated 2.5-
m Sloan telescope (Gunn et al. 2013) to perform spectroscopic
follow-up of targets selected from images made using a now-retired
drift-scanning mosaic CCD camera (Gunn et al. 2006) that imaged
the sky in five photometric bands (Fukugita et al. 1996) to a limit-
ing magnitude of r ' 22.5. The BOSS (Dawson et al. 2013) is the
part of SDSS-III that will measure spectra for 1.5 million galaxies
and 160.000 quasars over a quarter of the sky.

We use the DR11 CMASS sample of galaxies (Anderson et al.
2013; Smee et al. 2013; Bolton et al. 2012). This lies in the redshift
range of 0.43 < z < 0.70 and consists of 690826 galaxies covering
8498 square degrees (effective volume of 6.0 Gpc3).

Figure 1 shows the redshift distribution of galaxies in our
sample. The number density is of order of 10�4 peaking at n̄ '
4 ⇥ 10�4h3 Mpc�3.

3 THE MEASUREMENTS

We measure the correlation function of galaxies in the CMASS
sample defined as the ensemble average of the product of over-
densities in the galaxy field separated by a certain distance r

⇠(r) ⌘ h�g(r0)�g(r0 + r)i. (4)

The overdensity as a function of r is given by

�g(r) =
ng(r) � n̄g(r)

n̄g(r)
, (5)

where n̄g(r) is expected average density of galaxies at a position r
and ng(r) is an observed number density.

Figure 1. The number density of CMASS DR11 galaxies in redshift bins
of �z = 0.01 in northern and southern Galactic hemispheres, computed
assuming our fiducial cosmology.

Figure 2. The two-dimensional correlation function of DR11 sample mea-
sured in bins of 1h�1 ⇥ 1h�1 Mpc2. We use first two Legendre multipoles of
the correlation function in our study rather than the two-dimensional corre-
lation function displayed here.

We estimate the correlation function using the Landy-Szalay
minimum-variance estimator (Landy & Szalay 1993)

⇠̂(�ri) =
DD(�ri) � 2DR(�ri) + RR(�ri)

RR(�ri)
, (6)

where DD(�ri) is the weighted number of galaxy pairs whose sep-
aration falls within the �ri bin, RR(�ri) is number of similar pairs
in the random catalogue and DR(�ri) is the number of cross-pairs
between the galaxies and the objects in the random catalogue.

Figure 2 shows the two-dimensional correlation function of
DR11 sample measured in bins of 1h�1⇥1h�1 Mpc2. Both the “BAO
ridge” (a ring of local maxima at approximately 100h�1 Mpc) and
the RSD signal (LOS “squashing” of the correlation function) are
detectable by eye.

The random catalogue is constructed by populating the vol-
ume covered by galaxies with random points with zero correlation.
We use a random catalogue that has 50 times the density of galaxies

c� 0000 RAS, MNRAS 000, 1–15

observer’s line-of-
sight direction

(Planck 2015. XIV)

(Samushia et al. ’14)

Cluster profile & abundance are also powerful probe (see later)

�2(� + �)

�
dt (�̇ + �̇)

P (S)(k, µ) = (1 + f µ2)2 P (k)

Planck Collaboration: Gravitational lensing by large-scale structures with Planck
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Fig. 6 Planck 2015 full-mission MV lensing potential power spectrum measurement, as well as earlier measurements using the
Planck 2013 nominal-mission temperature data (Planck Collaboration XVII 2014), the South Pole Telescope (SPT, van Engelen
et al. 2012), and the Atacama Cosmology Telescope (ACT, Das et al. 2014). The fiducial ⇤CDM theory power spectrum based on
the parameters given in Sect. 2 is plotted as the black solid line.

In addition to the priors above, we adopt the same sampling
priors and methodology as Planck Collaboration XIII (2015),†
using CosmoMC and camb for sampling and theoretical predic-
tions (Lewis & Bridle 2002; Lewis et al. 2000). In the ⇤CDM
model, as well as ⌦bh2 and ns, we sample As, ⌦ch2, and the
(approximate) acoustic-scale parameter ✓MC. Alternatively, we
can think of our lensing-only results as constraining the sub-
space of ⌦m, H0, and �8. Figure 7 shows the corresponding
constraints from CMB lensing, along with tighter constraints
from combining with additional external baryon acoustic oscil-
lation (BAO) data, compared to the constraints from the Planck
CMB power spectra. The contours overlap in a region of accept-
able Hubble constant values, and hence are compatible. To show
the multi-dimensional overlap region more clearly, the red con-
tours show the lensing constraint when restricted to a reduced-
dimensionality space with ✓MC fixed to the value accurately mea-
sured by the CMB power spectra; the intersection of the red and
black contours gives a clearer visual indication of the consis-
tency region in the ⌦m–�8 plane.

The lensing-only constraint defines a band in the ⌦m–�8
plane, with the well-constrained direction corresponding ap-
proximately to the constraint

�8⌦
0.25
m = 0.591 ± 0.021 (lensing only; 68 %). (13)

This parameter combination is measured with approximately
3.5% precision.

The dependence of the lensing potential power spectrum on
the parameters of the ⇤CDM model is discussed in detail in
† For example, we split the neutrino component into approximately

two massless neutrinos and one with
P

m⌫ = 0.06 eV, by default.

Appendix E; see also Pan et al. (2014). Here, we aim to use
simple physical arguments to understand the parameter degen-
eracies of the lensing-only constraints. In the flat ⇤CDM model,
the bulk of the lensing signal comes from high redshift (z > 0.5)
where the Universe is mostly matter-dominated (so potentials are
nearly constant), and from lenses that are still nearly linear. For
fixed CMB (monopole) temperature, baryon density, and ns, in
the ⇤CDM model the broad shape of the matter power spectrum
is determined mostly by one parameter, keq ⌘ aeqHeq / ⌦mh2.
The matter power spectrum also scales with the primordial am-
plitude As; keeping As fixed, but increasing keq, means that the
entire spectrum shifts sideways so that lenses of the same typ-
ical potential depth  lens become smaller. Theoretical ⇤CDM
models that keep `eq ⌘ keq �⇤ fixed will therefore have the same
number (proportional to keq �⇤) of lenses of each depth along
the line of sight, and distant lenses of the same depth will also
maintain the same angular correlation on the sky, so that the
shape of the spectrum remains roughly constant. There is there-
fore a shape and amplitude degeneracy where `eq ⇡ constant,
As ⇡ constant, up to corrections from sub-dominant changes in
the detailed lensing geometry, changes from late-time potential
decay once dark energy becomes important, and nonlinear ef-
fects. In terms of standard ⇤CDM parameters around the best-fit
model, `eq / ⌦0.6

m h, with the power-law dependence on ⌦m only
varying slowly with ⌦m; the constraint `eq / ⌦0.6

m h = constant
defines the main dependence of H0 on ⌦m seen in Fig. 7.

The argument above for the parameter dependence of the
lensing power spectrum ignores the e↵ect of baryon suppres-
sion on the small-scale amplitude of the matter power spectrum
(e.g., Eisenstein & Hu 1998). As discussed in Appendix E, this

8
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Constraints from CMB
Assuming scale-independent parameters:

�k2� = 4� Ga2 µ �m �m
Planck Collaboration: Planck 2015 results. XIV. Dark energy and modified gravity
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Fig. 17. 68 % and 95 % marginalised posterior distributions for the two parameters {µ0 � 1, ⌘0 � 1} obtained by evaluating Eqs. (46)
and (47) at the present time when no scale dependence is considered (see Sect. 5.2.2). Here we show the e↵ect of CMB lensing,
which shifts the contours towards ⇤CDM. In the labels, Planck stands for Planck TT+lowP.

term in the action is generalised to an arbitrary function of
(r�)2 (Armendariz-Picon et al. 2000): the sound speed can then
be di↵erent from the speed of light and if cs ⌧ 1, the DE per-
turbations can become non-negligible on sub-horizon scales and
impact structure formation. To test this scenario we have per-
formed a series of analyses where we allow for a constant equa-
tion of state parameter w and a constant speed of sound c2

s (with
a uniform prior in log cs). We find that the limits on w do not
change from the quintessence case and that there is no signifi-
cant constraint on the DE speed of sound using current data. This
can be understood as follows: on scales larger than the sound
horizon and for w close to �1, DE perturbations are related to

Fig. 18. 68 % and 95 % contour plots for the two parameters
{µ0(k) � 1, ⌘0(k) � 1} obtained by evaluating Eqs. (46) and
(47) at the present time for the DE-related parameterization
(see Sect. 5.2.2). We consider both the scale-independent and
scale-dependent cases, choosing k values of 10�10Mpc�1 and
102Mpc�1.

dark matter perturbations through �DE ' (1+w)�m/4 and inside
the sound horizon they stop growing because of pressure sup-
port (see e.g., Sapone & Kunz 2009). In addition, at early times
the DE density is much smaller than the matter density, with
⇢DE/⇢m = [(1 � ⌦m)/⌦m]a�3w. Since the relative DE contribu-
tion to the perturbation variable Q(a, k) defined in Eq. (3) scales
like ⇢DE�DE/(⇢m�m), in k-essence type models the impact of the
DE perturbations on the total clustering is small when 1+w ⇡ 0.
For the DE perturbations in k-essence to be detectable, the sound
speed would have had to be very small, and |1 + w| relatively
large.

5.3.2. Massive gravity and generalized scalar field models

We now give two examples of subclasses of Horndeski models,
written in terms of an alternative pair of DE perturbation func-
tions (with respect to µ and ⌘ used before, for example), given
by the anisotropic stress � and the entropy perturbation �:

w� =
�p
⇢
� dp

d⇢
� . (48)

When � = 0 the perturbations are adiabatic, that is �p = dp
d⇢ �⇢.

For this purpose, it is convenient to adopt the ‘equation
of state’ approach described in Battye & Pearson (2012). The
gauge-invariant quantities � and � can be specified in terms of
the other perturbation variables, namely �⇢, ✓, h and ⌘ in the
scalar sector, and their derivatives.

We then show results for two limiting cases in this for-
malism, corresponding to Lorentz-violating massive gravity
(LVMG) for which (� , 0,� = 0) and generalized scalar field
models (GSF) in which the anisotropic stress is zero (� = 0,� ,
0).

Lorentz-violating massive gravity (LVMG) If the Lagrangian is
L ⌘ L(gµ⌫) (i.e. only written in terms of metric perturbations,
as in the EFT action) and one imposes time translation invari-
ance (but not spatial translational invariance), one finds that this

22

Planck Collaboration: Planck 2015 results. XIV. Dark energy and modified gravity
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Fig. 14. 68 % and 95 % contour plots for the two parameters {µ0 � 1, ⌘0 � 1} obtained by evaluating Eqs. (46) and (47) at the present
time when no scale dependence is considered (see Sect. 5.2.2). We consider both the DE-related (left panel) and time-related
evolution cases (right panel). Results are shown for the scale-independent case (c1 = c2 = 1). In the labels, Planck stands for Planck
TT+lowP.

Fig. 16. Redshift dependence of the function 2[µ(z, k)�1]+ [⌘(z, k)�1], defined in Eqs. (46,47), which corresponds to the maximum
degeneracy line identified within the 2 dimensional posterior distributions. This combination shows the strongest allowed tension
with ⇤CDM. The left panel refers to the DE-related case while the right panel refers to the time-related evolution (see Sect. 5.2.2).
In both panels, no scale dependence is considered. The coloured areas show the regions containing 68 % and 95 % of the models. In
the labels, Planck stands for Planck TT+lowP.

ing for scale dependence, the tension with ⇤CDM is washed out
by the weakening of the constraints and the goodness of fit does
not improve with respect to the scale independent case.

5.3. Further examples of particular models

Quite generally, DE and MG theories deal with at least one extra
degree of freedom that can usually be associated with a scalar
field. For ‘standard’ DE theories the scalar field couples mini-
mally to gravity, while in MG theories the field can be seen as the
mediator of a fifth force in addition to standard interactions. This
happens in scalar-tensor theories (including f (R) cosmologies),
massive gravity, and all coupled DE models, both when matter
is involved or when neutrino evolution is a↵ected. Interactions

and fifth forces are therefore a common characteristic of many
proposed models, the di↵erence being whether the interaction is
universal (i.e., a↵ecting all species with the same coupling, as in
scalar-tensor theories) or is di↵erent for each species (as in cou-
pled DE, Wetterich 1995b; Amendola 2000 or growing neutrino
models, Fardon et al. 2004; Amendola et al. 2008a). In the fol-
lowing we will test well known examples of particular models
within all these classes.

5.3.1. Minimally coupled DE: sound speed and k-essence

In minimally coupled quintessence models, the sound speed
is c2

s = 1 and DE does not contribute significantly to clus-
tering. However, in so-called “k-essence” models, the kinetic
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Constraints from RSD
Assuming scale-independent growth rate:

Okumura et al. (’16)

f(z) � d lnD+(a)
d ln a

� {�m(z)}0.55 GR
Publications of the Astronomical Society of Japan (2016), Vol. 00, No. 0 17

Fig. 17. Constraints on the growth rate f (z)σ 8(z) as a function of redshift at 0 < z < 1.55. The constraint obtained from our FastSound sample at
1.19 < z < 1.55 is plotted as the big red point. The previous results include the 6dFGS, 2dFGRS, SDSS main galaxies, SDSS LRG, BOSS LOWZ,
WiggleZ, BOSS CMASS, VVDS, and VIPERS surveys at z < 1. A theoretical prediction for fσ 8 from "CDM and general relativity with the amplitude
determined by minimizing χ2 is shown as the red solid line. The data points used for the χ2 minimization are denoted as filled-symbol points while
those which are not used are denoted as open-symbol points. The predictions for fσ 8 from modified gravity theories with the amplitude determined
in the same way are shown as the thin lines with different line types: f (R) gravity model (dot-short-dashed), the covariant Galileon model (dashed),
the extended Galileon model (dotted), DGP model (dot-dashed), and the early, time-varying gravitational constant model (black solid). (Color online)

Fig. 18. Constraints on the growth rate fσ 8 as a function of redshift compared to the "CDM model with the best-fit models from the CMB exper-
iments. The data points are the same as those in figure 17. Theoretical predictions with 68% confidence intervals based on WMAP9 and Planck
CMB measurements are shown as the green and red shaded regions, respectively. The early, time-varying gravitational constant models with
Ġ/G = 3.5 × 10−11 [yr−1] and 7.0 × 10−11 [yr−1] are respectively shown as the blue and magenta lines. (Color online)

and VIPERS with zeff = 0.8. With this choice, all the
data points are uncorrelated except for the 2.1% corre-
lation between the CMASS and the higher-redshift bin of
the LRG (see Alam et al. 2016). Using the seven data
points of fσ 8, we compute the χ2 for theoretical predic-
tions of gravity theories including GR with the amplitude
of fσ 8 being a free parameter. The "CDM model plus
GR with the best-fit amplitude is shown as the solid line
in figure 17.

6.2 Modified gravity models

On the scales probed by large-scale structure surveys, the
growth rate f generally obeys a simple evolution equation
(Baker et al. 2014; Leonard et al. 2015):

f ′ + q(x) f + f 2 = 3
2

$mξ, (22)

where q(x) = 1
2

{1 − 3 w(x)[1 − $m(x)]} ; (23)
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Fig. 17. Constraints on the growth rate f (z)σ 8(z) as a function of redshift at 0 < z < 1.55. The constraint obtained from our FastSound sample at
1.19 < z < 1.55 is plotted as the big red point. The previous results include the 6dFGS, 2dFGRS, SDSS main galaxies, SDSS LRG, BOSS LOWZ,
WiggleZ, BOSS CMASS, VVDS, and VIPERS surveys at z < 1. A theoretical prediction for fσ 8 from "CDM and general relativity with the amplitude
determined by minimizing χ2 is shown as the red solid line. The data points used for the χ2 minimization are denoted as filled-symbol points while
those which are not used are denoted as open-symbol points. The predictions for fσ 8 from modified gravity theories with the amplitude determined
in the same way are shown as the thin lines with different line types: f (R) gravity model (dot-short-dashed), the covariant Galileon model (dashed),
the extended Galileon model (dotted), DGP model (dot-dashed), and the early, time-varying gravitational constant model (black solid). (Color online)
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iments. The data points are the same as those in figure 17. Theoretical predictions with 68% confidence intervals based on WMAP9 and Planck
CMB measurements are shown as the green and red shaded regions, respectively. The early, time-varying gravitational constant models with
Ġ/G = 3.5 × 10−11 [yr−1] and 7.0 × 10−11 [yr−1] are respectively shown as the blue and magenta lines. (Color online)

and VIPERS with zeff = 0.8. With this choice, all the
data points are uncorrelated except for the 2.1% corre-
lation between the CMASS and the higher-redshift bin of
the LRG (see Alam et al. 2016). Using the seven data
points of fσ 8, we compute the χ2 for theoretical predic-
tions of gravity theories including GR with the amplitude
of fσ 8 being a free parameter. The "CDM model plus
GR with the best-fit amplitude is shown as the solid line
in figure 17.

6.2 Modified gravity models

On the scales probed by large-scale structure surveys, the
growth rate f generally obeys a simple evolution equation
(Baker et al. 2014; Leonard et al. 2015):

f ′ + q(x) f + f 2 = 3
2

$mξ, (22)
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Beyond linear regime

• Linear relation between is inadequate� � �m&

Nonlinear 5th force (scalaron) comes to play a role
(screening mechanism)

•Precision nonlinear modeling is crucial

Difficulty in model-independent approach
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perturbations (3.8) perturbatively

!a ¼ !ð1Þ
a þ!ð2Þ

a þ!ð3Þ
a þ . . . (5.7)

The power spectrum is also expanded accordingly

Pabðk; tÞ ¼ Pð11Þ
ab ðk; tÞ þ Pð22Þ

ab ðk; tÞ þ Pð13Þ
ab ðk; tÞ þ . . .

(5.8)

The detailed calculations are summarized in Appendix B.
In Fig. 1, we compare the results obtained by solving the
closure equations numerically with those from the analytic
solutions. In order to derive the analytic solutions, we
employed the Einstein–de Sitter (EdS) approximation. In
the EdS approximation, all the nonlinear growth rates
appearing in the higher-order solutions are approximately
determined by the linear growth rate D1ðtÞ. It is also
possible to apply the EdS approximation in the numerical
calculations [53] and we have checked that the EdS ap-
proximation changes the result only at subpercent level.
The fact that the two results agree very well confirms the
validity of our numerical code.

B. fðRÞ gravity models

In this subsection, we derive the quasi-nonlinear power
spectrum in fðRÞ gravity model (see [27,28] for reviews).
In this model, N-body simulations have been performed
[24–26] and we will check our numerical solutions against
the full N-body simulations.

1. fðRÞ gravity models

We consider another class of modified theory of gravity
that generalizes the Einstein-Hilbert action to include an
arbitrary function of the scalar curvature R:

S ¼
Z

d4x
ffiffiffiffiffiffiffi%g

p "
Rþ fðRÞ

2!2 þ Lm

#
; (5.9)

where !2 ¼ 8"G and Lm is the Lagrangian of the ordinary
matter. This theory is equivalent to the BD theory with
!BD ¼ 0 but there is a nontrivial potential [63,64]. This
can be seen from the trace of modified Einstein equations:

3hfR % Rþ fRR% 2f ¼ %!2#; (5.10)

where fR ¼ df=dR and h is a Laplacian operator and we
assumed a matter-dominated universe. We can identify fR
as the BD scalar field and its perturbations are defined as

’ ¼ $fR & fR % "fR; (5.11)

where the bar indicates that the quantity is evaluated on the
cosmological background. In this paper, we assume
j "fRj ' 1 and j "f= "Rj ' 1. These conditions are necessary
to have the background close to #CDM cosmology. Then
the BD scalar perturbations satisfy

3
1

a2
r2’ ¼ %!2#m$þ $R; $R & RðfRÞ % Rð "fRÞ:

(5.12)

This is nothing but the equation for the BD scalar pertur-
bations with!BD ¼ 0 and the potential gives the nonlinear
interaction term

I ð’Þ ¼ $Rð’Þ: (5.13)

Then we find

M1 ¼ "Rfð%Þ &
d "RðfRÞ
dfR

; M2 ¼ "Rffð%Þ &
d2 "RðfRÞ
df2R

;

M3 ¼ "Rfffð%Þ &
d3 "RðfRÞ
df3R

; $ðk; %Þ ¼
$
k

a

%
2
þ

"Rfð%Þ
3

:

We should note that in this model, the linear growth rate
depends on the wave number. Because of this, the vertex
functions are not the separable functions in terms of k and
%. This prevents us deriving the solutions analytically
unlike the DGP case and we need to solve the closure
equation directly.
In this paper, we consider the function fðRÞ of the form

fðRÞ / R

ARþ 1
; (5.14)

where A is a constant with dimensions of length squared
[33]. In the limit R ! 0, fðRÞ ! 0 and there is no cosmo-
logical constant. For high curvature AR ( 1, fðRÞ can be
expanded as

fðRÞ ’ %2!2## % fR0
"R2
0

R
; (5.15)

where ## is determined by A, "R0 is the background curva-
ture today and we defined fR0 as fR0 ¼ "fRðR0Þ. As we
mentioned before, we take jfR0j ' 1 and assume that the
background expansion follows the #CDM history with the
same ##. TheM1 term determines the mass of the BD field
mBD ¼ ðM1=3Þ1=2 as

mBDð%Þ &
ffiffiffiffiffiffi
"Rf

3

s
¼

$
R0

6j "fRj

ffiffiffiffiffiffiffiffi
fR0
"fR

s %
1=2

: (5.16)

Above the Compton length m%1
BD, the BD scalar interaction

decays exponentially and we recover GR. On small scales,
we recover the BD theory with !BD ¼ 0 if we neglect the
higher order terms Mi, (i > 1). From Eq. (3.11), the
Newton constant is 4=3 times large than GR. Thus the
linear power spectrum acquires a scale-dependent en-
hancement on small scales. Of course, this model is ex-
cluded from local gravity constraints. The higher order
termsMiði > 1Þ are responsible for suppressing this modi-
fication of gravity on small scales via the chameleon
mechanism and it makes it possible to pass local gravity
constraints. Thus we expect that the nonlinear interaction
terms I will suppress the nonlinear power spectrum. In the

NONLINEAR EVOLUTION OF THE MATTER POWER . . . PHYSICAL REVIEW D 79, 123512 (2009)

123512-9

;

nonlinear function 
of �fRscalaron
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e.g.,  f(R) gravity



Impact of nonlinear 5th force
Koyama, AT & Hiramatsu (’09)

FIG. 6 (color online). The same as Fig. 4 in fðRÞ gravity models.

FIG. 5 (color online). Comparison between the PPF prediction and N-body simulations. In the left panel, Smith et al. fitting formula
is used to predict Pnon-GR and PGR. We used cnl determined by the perturbation theory cnl ¼ 0:3 at z ¼ 0. In the right panel, we fitted
N-body results with the linear Poisson equation to derive Pnon-GR.

NONLINEAR EVOLUTION OF THE MATTER POWER . . . PHYSICAL REVIEW D 79, 123512 (2009)
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Hu & Schmidt
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between the power spectrum in fðRÞ theory and that in
!CDM model in fully nonlinear regime for several cnl.

It is also possible to check our predictions against the
N-body simulations done by Refs. [24–26]. Figure 7 shows
the comparison between the PPF prediction and N-body
simulations. In the left panel, the dashed line corresponds
to nonchameleon case with cnl ¼ 0. The corresponding
N-body results are shown by triangles. We again used the
fitting formula by Smith et al. to derive the nonlinear power
spectrum from the linear power spectrum. Compared with
theN-body results, we find that, in this case, the formula by
Smith et al. slightly underestimates the power spectrum
around 0:03h Mpc$1 < k< 0:5h Mpc$1 and overesti-
mates the power at k > 0:5h Mpc$1 though N-body simu-
lations have large errors in this regime. The solid line
shows the case with the chameleon mechanism. Again
the PPF formalism underestimates the power spectrum in
the same region as the nonchameleon case. If we take the
ratio between the nonchameleon case and chameleon case,
the PPF formalism nicely recovers theN-body results up to
k% 0:5h Mpc$1. Beyond that, N-body simulations have

large errors. We should emphasize that the perturbation
theory is valid only up to k ¼ 0:08h Mpc$1 at z ¼ 0. Thus
the PPF formalism using cnl derived by the perturbation
theory describes the effect of the chameleon mechanism on
nonlinear scales beyond the validity regime of the pertur-
bation theory.
As we have done in DGP models, we also derived the

power spectrum without the chameleon mechanism
Pnon-GR by interpolating the N-body results (see the right
panel of Fig. 7). Using this power spectrum as the non-
chameleon power spectrum Pnon-GR in the PPF formalism,
we find that the power spectrum with the chameleon
mechanism can be very well described by the PPF formal-
ism where cnl is derived by the perturbation theory. Again
for larger k, N-body simulations also do not have enough
resolutions and it is difficult to tell whether this extrapola-
tion is good or not. More detailed study is needed to
address the power spectrum at larger k, but the PPF formal-
ism is likely to give a promising way to develop a fitting
formula for the nonlinear power spectrum in modified
gravity models.

FIG. 7 (color online). Comparison between the PPF prediction and N-body simulations in fðRÞ gravity models. In the left panel,
Smith et al. fitting formula is used to predict Pnon-GR and PGR. We used cnl determined by the perturbation theory cnl ¼ 0:085 at z ¼ 0.
In the right panel, we fitted N-body results without the chameleon mechanism to derive Pnon-GR.

KAZUYA KOYAMA, ATSUSHI TARUYA, AND TAKASHI HIRAMATSU PHYSICAL REVIEW D 79, 123512 (2009)
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FIG. 7: Two-dimensional error contours derived from MCMC analysis, fixing the maximum wavenumber to kmax =
0.15 h Mpc−1. Left panel shows the results derived from the PT template calculated in f(R) gravity. The three different
contours represent the cases with the PT template with and without A and B terms (magenta, green), and with A and B
calculated in GR (blue), which are also shown in Fig. 6. On the other hand, in right panel, the results are shown for the
PT template calculated in GR. In GR, the power spectrum template can be written as functions of k, µ, and the linear
growth rate f , i.e., P (S)(k, µ; f). Here, incorporating the linear growth rate of the f(R) gravity into the GR-based template,
we derive the constraints on |fR,0| and σv, depicted as contour with orange color. The contour with magenta color is the
result taking account of the scale-dependent relative growth by introducing gravity bias, δn-body,F4(k) = b(k) δPT,GR(k) with
b(k) = (1 + A2 k2)/(1 + A1 k) and marginalizing over the nuisance parameters A1 and A2 [see Eq. (23) ].

for an unbiased estimation of |fR,0|, we need to addition-
ally incorporate the effect of gravity bias, that accounts
for the relative difference of the clustering amplitude be-
tween GR and f(R) gravity, into the PT template. The
contour with magenta color is the results taking account
of this gravity bias, simply assuming the following rela-
tion:

δn-body,F4(k) = b(k) δPT,GR(k); b(k) =
1 + A2 k2

1 + A1 k
,

(23)

where δn-body,F4 is the density field in N -body simula-
tion, whilst δGR is the density field for the PT calcula-
tion. The function b(k) characterizes the scale-dependent
growth relative to the GR prediction, and we adopt here
the functional form similar to those frequently used to
model the galaxy bias (e.g., [65, 66]). Allowing the pa-
rameters A1 and A2 to float, the result marginally repro-
duces the fiducial value of |fR,0|, and the goodness-of-fit
quantified by χ2

red is improved. With the increased num-
ber of free parameters, however, constraining power is
significantly reduced, and the size of error contour indeed
becomes large (c.f. left panel of Fig. 7). This proves that
the heterogeneous PT template is insufficient to tightly
constrain the model parameter of modified gravity, and
a full PT modeling taking proper account of the mod-
ified gravity is required for unlocking the full power of
precision RSD measurement.

B. Model-independent detection of a small
deviation from GR

Consider next the model-independent test of GR, and
discuss how well we can characterize or detect the scale
dependence of the linear growth rate, f . Here, for illus-
trative purpose, we examine the two simple cases. One is
to divide the power spectrum data into several wavenum-
ber bins, and in each bin, we try to estimate f to see a
possible deviation from spatially homogeneous f . The
other case is to assume a specific functional form of f ,
and to constrain its parameters. In both cases, similar to
the analysis shown in right panel of Fig. 7, we adopt the
GR-based PT template with the improved model of RSD,
and take account of the gravity bias in Eq. (23). We then
fit the template to the monopole and quadrupole power
spectra at z = 1 measured from N -body simulations of
f(R) gravity with |fR,0| = 10−4.

Fig. 8 shows the result of MCMC analysis for the
binned linear growth rate, where we set kmax =
0.15 h Mpc−1, and divide the power spectrum data into
three equal bins. Solid line represents the linear growth
rate of the f(R) gravity, while the vertical errorbars
of the binned results indicate the 1-σ statistical uncer-
tainty derived from the MCMC analysis, marginalized
over other nuisance parameters. Note that number of
free parameters is 6. The best-fit value of f in each bin
is close to the fiducial value, but slightly away from lin-
ear theory prediction except for the central bin. As a

Need for a consistent treatment
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Template based on f(R) gravity
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FIG. 6: Top: Best-fit values of |fR,0| as function of the
maximum wavenumber kmax used for MCMC analysis. As-
suming the cosmic variance limited survey of the volume
V = 10 h−3 Gpc3, we fit the PT template to the N -body
simulation of the F4 run at z = 1, and derive the best-fit
values and 1-σ statistical error of |fR,0|, allowing the param-
eter σv to be free. Filled circles are the results based on the
RSD model (2) in f(R) gravity, while filled triangles are the
cases ignoring the A and B terms. Open circles represent the
results similar to filled circles, but the corrections A and B
are calculated in GR. For comparison, crosses are the results
ignoring not only the A and B terms but also the damping
function DFoG.

examine the parameter estimation analysis.

A. Constraining model parameters of modified
gravity

Let us first consider the model-dependent analysis to
constrain the model parameter of modified gravity, as-
suming the f(R) gravity with |fR,0| = 10−4 as our fidu-
cial gravity model. For specific functional form with
Eq. (19) [or Eq. (18)], the parameter |fR,0| is the only
parameter characterizing a deviation of gravity from GR.
Thus, the test of gravity is made possible with constrain-
ing the model parameter |fR,0| by fitting the theoretical
template to the data set of redshift-space power spec-
trum. Here, as a simple demonstration, we ignore the
effect of galaxy bias, and allowing |fR,0| to flow, we fit
the PT template to the N -body data at z = 1.

Fig. 6 shows the results of parameter estimation based
on the Markov chain Monte Carlo (MCMC) technique.
Assuming the hypothetical survey limited by the cosmic

variance error with the survey volume V = 10h−3 Gpc3,
the best-fit value of |fR,0| and the 1-σ statistical error
are derived, and are plotted (top) as function of maxi-
mum wavenumber, kmax, together with the reduced chi-
squared statistic χ2

red (bottom), where kmax represents
the range of the wavenumber used for parameter estima-
tion. Note here that the number of free parameters is
two, i.e., |fR,0| and σv. Accordingly, the derived con-
straint is rather tight, and a slight discrepancy between
the template and data can lead to a biased estimation of
the |fR,0|. Fig. 6 shows that only the improved model of
RSD computed in f(R) gravity (filled circles) recovers the
fiducial |fR,0| out to kmax = 0.15h Mpc−1, correspond-
ing to the applicable range of standard PT one-loop. A
slight change of the PT template, depicted as open cir-
cles and filled triangles, leads to a biased estimation of the
model parameter. Ignoring the damping function DFoG

(crosses) further adds a large systematic error. This is
even true at kmax ! 0.1h Mpc−1.

Left panel of Fig. 7 shows the representative result of
the two-dimensional constraints on |fR,0| and σv taken
from Fig. 6, where we fix the maximum wavenumber to
kmax = 0.15 h Mpc−1. The meaning of color types are the
same as in Fig. 6, and in each error contour, inner and
outer contours respectively represent the 1-σ (68% C.L.)
and 2-σ (96% C.L.) constraints. Overall, the degeneracy
between |fR,0| and σv is weak, and the result suggests
that at the scales accessible by PT template, the model
parameter |fR,0| can be constrained down to O(10−5)
from future RSD measurements.

Note, however, that this is only true when we properly
take account of the effect of modified gravity in comput-
ing the PT template. Most of the analysis in the litera-
ture considered the effect of modified gravity only in the
linear growth rate f and incorporated it into the GR-
based template to constrain the model parameter |fR,0|
using the measurements of RSD (e.g., [63, 64] for re-
cent works). The right panel of Fig. 7 indeed demon-
strates such a case. That is, we adopt the GR-based PT
template in which the effect of modified gravity is only
incorporated in the linear growth rate f . In GR, the
velocity-divergence field θ is known to be factorized as
θ(k; t) = f θ̃(k; t), where θ̃ is perturbatively expanded
as θ̃(k; t) =

∑
n [D+(t)]n θ̃n(k). As a result, at a given

redshift, the PT template of the redshift-space power
spectrum is described as the function of k, µ and f ,
i.e., P (S)(k, µ; f). Since the growth rate f controlls the
strength of RSD, we naively expect that simply incorpo-
rating the scale-dependent f in modified gravity into the
PT template allows us to faithfully constrain the model
parameter |fR,0|.

However, this actually leads to a biased estimation of
the model parameter |fR,0|, as shown in the contour with
orange color of Fig. 7. The reason for the large systematic
bias is ascribed to the fact that the modification of grav-
ity not only alters the linear growth rate but also affects
the shape of the real-space power spectra because of the
scale-dependent growth, as clearly shown in Fig. 2. Thus,

1-σ error:  cosmic variance 
limited survey of 10(Gpc/h)^3

�
2 re

d
|f

R
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| fiducial value
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The aim of the present paper is to examine these is-
sues based on an improved model of RSD developed by
Ref. [1]. The power spectrum expression of this model
is similar to the one proposed by Ref. [2] and the so-
called streaming model frequently used in the literature
(see also [2–5]), but includes two important PT correc-
tions as a result of the low-k expansion. Although the
model allows to also include a phenomenological term to
account for the Finger-of-God damping arising from the
small-scale physics, combining the recently developed re-
summed PT, it successfully describes not only the matter
but also the halo power spectra in N -body simulations
[6]. The model is shown to be used as a theoretical tem-
plate to simultaneously constrain the parameters associ-
ated with cosmic expansion and structure growth in an
unbiased manner, and applying it to the Luminous Red
Galaxy sample of Sloan Digital Sky Survey Data Release
7, a robust contraint is obtained (Oka et al. in prep.).

Here, extending these previous works in GR, we put
forward a prescription to compute redshift-space power
spectrum in modified gravity models.

• A brief introduction of RSD model by Ref. [1]

• What the present paper will do

The paper is organized as follows. In Sec. II, we begin
by breafly reviewing the model of RSD.

II. MODELING REDSHIFT-SPACE POWER
SPECTRUM FROM PERTURBATION THEORY

A. An improved model of RSD

We begin by writing the exact expression for redshift-
space power spectrum. Let us denote the density and
velocity fields by δ and v. Owing to the distant-observer
approximation, which is usually valid for the observation
of distant galaxies of our interest, one can write (e.g.,
[1, 2, 7])

P (S)(k) =
∫

d3x eik·x〈
eikµ ∆uz

× {δ(r)−∇zuz(r)} {δ(r′)−∇zuz(r′)}
〉
, (1)

where x = r − r′ denotes the separation in real space
and ⟨· · · ⟩ indicates an ensemble average. In the above
expression, the z-axis is taken as observer’s line-of-sight
direction, and we define the directional cosine µ by
µ = kz/k. Further, we defined uz(r) = vz(r)/(aH),
and ∆uz = uz(r) − uz(r′) for the line-of-sight compo-
nent of the velocity field. Note that the above expres-
sion has been derived without invoking the dynamical
information for velocity and density fields, i.e., the Eu-
ler equation and/or continuity equations. Thus, Eq. (1)
does hold even in modified gravity models.

Eq. (1) can be re-expressed in terms of the cumu-
lants. Then, the term in the bracket is factorized into two
terms, each of which include the exponential factor (e.g.,
see Eq.(6) of Ref. [1] for explicit expression). Among
these, the overall factor, expressed as exp{⟨eikµ ∆uz ⟩c}
with ⟨· · · ⟩c being the cumulant, is responsible for the sup-
pression of the power spectrum arising mostly from the
virialized random and coherent motion on small scales.
The effect of this is known to be partly non-perturbative,
and seems difficult to treat petrubatively. Since it has
been shown to mainly change the broadband shape of
the power spectrum, we may phenomenologically char-
acterize it with a general functional form DFoG(kµσv)
with σv being a scale-independent constant. On the other
hand, the remaining factor includes the term leading to
the Kaiser effect in the linear regime, and is likely to af-
fect the structure of power spectrum on large-scales. Al-
though there also appears the exponential factor eikµ ∆uz

in each term of this factor, these contributions should be
small as long as we consider the large scales, and the
perturbative treatment may be applied.

With the proposition given above, Ref. [1] applied the
low-k expansion, keeping the overall prefactor as general
functional form DFoG. The resultant power spectrum
expression at one-loop order becomes

P (S)(k, µ) = DFoG[kµσv]

×
{

PKaiser(k, µ) + A(k, µ) + B(k, µ)
}

. (2)

Owing to the single-stream approximation in which the
dynamics of large-scale structure is described by the den-
sity δ and velocity divergence θ = ∇ · v/(aH), the quan-
tities PKaiser, A, and B are explicitly written as

PKaiser(k, µ) = Pδδ(k)− 2µ2 Pδθ(k) + µ4 Pθθ(k), (3)

A(k, µ) = −kµ

∫
d3p

(2π)3
pz

p2

× {Bσ(p, k − p,−k)−Bσ(p, k,−k − p)} , (4)

B(k, µ) = (kµ)2
∫

d3p

(2π)3
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sues based on an improved model of RSD developed by
Ref. [1]. The power spectrum expression of this model
is similar to the one proposed by Ref. [2] and the so-
called streaming model frequently used in the literature
(see also [2–5]), but includes two important PT correc-
tions as a result of the low-k expansion. Although the
model allows to also include a phenomenological term to
account for the Finger-of-God damping arising from the
small-scale physics, combining the recently developed re-
summed PT, it successfully describes not only the matter
but also the halo power spectra in N -body simulations
[6]. The model is shown to be used as a theoretical tem-
plate to simultaneously constrain the parameters associ-
ated with cosmic expansion and structure growth in an
unbiased manner, and applying it to the Luminous Red
Galaxy sample of Sloan Digital Sky Survey Data Release
7, a robust contraint is obtained (Oka et al. in prep.).
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The paper is organized as follows. In Sec. II, we begin
by breafly reviewing the model of RSD.
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A. An improved model of RSD

We begin by writing the exact expression for redshift-
space power spectrum. Let us denote the density and
velocity fields by δ and v. Owing to the distant-observer
approximation, which is usually valid for the observation
of distant galaxies of our interest, one can write (e.g.,
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∫

d3x eik·x〈
eikµ ∆uz

× {δ(r)−∇zuz(r)} {δ(r′)−∇zuz(r′)}
〉
, (1)
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and ⟨· · · ⟩ indicates an ensemble average. In the above
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µ = kz/k. Further, we defined uz(r) = vz(r)/(aH),
and ∆uz = uz(r) − uz(r′) for the line-of-sight compo-
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sion has been derived without invoking the dynamical
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hand, the remaining factor includes the term leading to
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form of these are obtained from the Poisson equation and field equation for Brans-Dicke scalar [Eqs. (3)-(5)], and the
expressions relevant for perturbations up to the third oder are respectively given by [1, 2]:
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Here, in deriving the last expression, we perturbatively solve the scalaron field ϕ in terms of δ using Eqs. (4) and (5)
(see Appendix B of Ref. [2] for derivation).

II. SOLVING STANDARD PT KERNELS NUMERICALLY

In this section, we present the evolution equations for PT kernels. Since we are interested in the late-time evolution
dominated by the growing mode, the solution for perturbed quantities δ and θ are expressed as
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where δ0 is the random initial density field. Then, defining the operator of the matrix form (here a is the scale factor
of the Universe)
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the evolution equations for the kernels Fn and Gn are written as
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The source functions Sn and Tn represent the nonlinear mode coupling, and are written in terms of the lower-oder
perturbed quantities. The explicit form of these functions is derived from the basic equations (6) and (6), and we will
summarize below the source functions up to the third order.

A. Sounce functions
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with the propagators Γð1Þ
a and Γð2Þ

a being evaluated with the
tree-level expressions [see Eqs. (51) and (52)].

B. Results

Figure 6 plots the monopole (l ¼ 0, top) and quadrupole
(l ¼ 2, bottom) moments of redshift-space power spec-
trum, multiplied by k3=2. The multipole moment of power
spectrum is defined by

PðSÞ
l ðkÞ ¼ 2lþ 1

2

Z
1

−1
dμPðSÞðk; μÞPlðμÞ: ð67Þ

The PT predictions based on the TNS model are shown in
solid lines, and just for reference, linear theory results are

also shown in dotted lines. In plotting the PT results, the
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Veff ∼ 6.0 Gpc3. The CMASS galaxy sample is composed
primarily of bright, central galaxies, resulting in a highly
biased (b ∼ 2) selection of mass tracers [52].
The redshift-space two-dimensional correlation function

ξðσ; πÞ of the BOSS DR11 galaxies was computed using
the standard Landy-Szalay estimator [53]. In the compu-
tation of this estimator we used a random point catalogue
that constitutes an unclustered but observationally repre-
sentative sample of the BOSS CMASS survey and contains
∼50 times as many randoms as we have galaxies.
The covariance matrix was obtained from 600 mock

catalogues based on second-order Lagrangian perturbation
theory (2LPT) [54,55]. The mocks reproduce the same
survey geometry and number density as the CMASS galaxy
sample. We obtain the covariance matrix using the same
treatment presented in our previous works [12,13].
We calculate the correlation function in 225 bins spaced

by 10 h−1Mpc in the range 0 < σ; π < 150h−1Mpc.
However, at small scales, if the nonperturbative effect of
FoG is underestimated, then the residual squeezing can be
misinterpreted as a variation inGθ or indeed fR0. We expect
the FoG effect to be increasingly important at smaller
scales, and so these measurements may be at risk of
misestimation. We therefore impose a conservative cut
on the measurements, excluding σcut < 40 h−1 Mpc and
scut < 50 h−1Mpc [12]. Indeed, [12] showed that cosmo-
logical parameter bias began to occur at smaller scales.

This reduces the number of measurement bins in σ and π
to Nbins ¼ 163.

B. Tests of theoretical templates

When the conservative cutoff scales of σcut ¼
40h−1Mpc and scut ¼ 50 h−1 Mpc are used for the analy-
sis, the effective range of scale in Fourier space becomes
k < 0.1Mpc−1. The power spectra of ΛCDM and fðRÞ
gravity models are presented in this range of scale in Fig. 1.
For the clustering scales considered in this likelihood
analysis, there are no deviations from ΛCDM. This implies
that fðRÞ gravity models with log jfR0j≲ −6 are effec-
tively equivalent to ΛCDM in this analysis. We take a
uniform prior on log jfR0j between −7 and −3.
We first test our pipeline of analysis by checking whether

it is possible to recover the ΛCDM limit log jfR0j≲ −6
using the mock catalogues based on ΛCDM. We use the
611 CMASS mock catalogues to measure central values of
ξðσ; πÞ and fit our theoretical fðRÞ templates to the
observed correlation function. The measured likelihood
function of log jfR0j is presented as a blue dotted curve in
the right panel of Fig. 4. The best fit log jfR0j indeed lies
within the ΛCDM limit of log jfR0j ≲ −6. There are no
mock galaxy catalogues based on fðRÞ gravity available so
we are not able to fully test our theoretical templates away
from the ΛCDM limit. The perturbation theory predictions
for the redshift space power spectrum in Fourier space

FIG. 4 (color online). The measured constraints on fR0, and their robustness to various tests, are presented. The measured likelihood
function appears in the top panels and the measured difference of χ2 is in the bottom panels. (Left panel) Results marginalizing over the
scale independent growth rate GΘ are shown by the black solid curve, while the constraints fixing GΘ ¼ 0.46, given by the Planck
concordance ΛCDM model, are blue dashed curves. The results for fR0 do not depend appreciably on the scale independent behavior.
(Right panel) The results also do not depend significantly on whether the initial power spectrum PðkÞ used matches the Planck (black
solid) or WMAP9 (black dashed) model. The blue dotted curve represents the results from analyzing galaxy clustering from ΛCDM
mock catalogues, verifying that jfR0j → 0 is recovered in this case.
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the correlation function ⇠(�,⇡) using a ⇤CDM template
and replace the growth function D�

+

or growth rate D⇥

+

by that in f(R) gravity with |f
R0

| = 3.2 ⇥ 10�5 and
|f

R0

| = 3.0⇥ 10�4.
For the scale dependent growth function D�

+

, the vari-
ation of ⇠(�,⇡) with a small |f

R0

| = 3.2⇥ 10�5 is similar
to the case of a scale independent enhancement of the
growth function studied in [9]. Peak points on the BAO
ring represented by a thick black solid curve in Fig. 2
move coherently along the circle in an anti–clockwise di-
rection. The blue dashed contours in the left panel of
Fig.2 represent this variation. However, ⇠(�,⇡) with a
larger |f

R0

| = 3.0⇥ 10�4 varies di↵erently from the scale
independent case. Peak points on the BAO ring remain
the same, while minima of BAO are deepened, shown as
blue dotted contours in the same panel.

Next, we consider the variation of ⇠(�,⇡) due to the
scale dependent growth rate D✓

+

. In the case of the scale
independent growth rate, if G

⇥

increases or decreases,
the anisotropic e↵ects from higher order moments are
visible in the plot of ⇠(�,⇡) with the BAO peak points
moving clockwise or anti-clockwise along the circle de-
pending on the location of the peaks. The blue dashed
contours in the right panel of Fig. 2 represent the vari-
ation of ⇠(�,⇡) with �D⇥

+

for |f
R0

| = 3.2 ⇥ 10�5 and
|f

R0

| = 3.0 ⇥ 10�4. For |f
R0

| = 3.0 ⇥ 10�4, we can see
that the peak positions are ‘squeezed’ along the BAO
ring.

Having shown the individual e↵ects of a scale depen-
dent growth function and growth rate on the correlation
function, we now present the correlation function ⇠(�,⇡)
in f(R) gravity models. In Fig. 3, the correlation function
with |f

R0

| = 3.2⇥10�5 and |f
R0

| = 3.0⇥10�4 are plotted
as black dashed and black dotted contours, respectively.
There is no variation of ⇠(�,⇡) up to |f

R0

| <⇠ 10�6, and
the correlation function is e↵ectively equivalent to that
of ⇤CDM. When |f

R0

| increases to |f
R0

| ⇠ 10�4, we
observe the deviation of ⇠(�,⇡) from ⇤CDM and this de-
viation can be understood as the combined e↵ect of the
scale dependent growth function and growth rate shown
in Fig. 2.

III. METHODOLOGY AND RESULTS

The observed clustering of galaxies in redshift space
not only probes the density and velocity fields, i.e. the
growth and gravity as discussed in the previous section,
but also provides a useful tool to determine both the
transverse and radial distances by exploiting the Alcock–
Paczyński e↵ect and the BAO scale. In galaxy redshift
surveys, each galaxy is located by its angular coordinates
and redshift. However, the correlation function, ⇠(�,⇡),
is measured in comoving distances. Therefore a fiducial
cosmological model is required for conversion into comov-
ing space. We use the best fit ⇤CDM universe to Planck
2013 data. The conversion depends on the transverse
and radial distances involving D

A

and H�1. Instead of

FIG. 3: The best fit correlation function ⇠(�,⇡) of ⇤CDM
(black solid unfilled contours) and the correlation function of
f(R) gravity models with |fR0

| = 3.2 ⇥ 10�5 (black dashed
unfilled contours) and 3.0 ⇥ 10�4 (dotted unfilled contours).
The blue filled contours represent the measured ⇠(�,⇡) from
the DR11 CMASS data. The levels of contours are given
by (�0.001, 0.002, 0.005, 0.016, 0.05) from the outer to inner
contours.

recreating the measured correlation function in comoving
distances for each di↵erent model, we create the fiducial
maps from the theoretical correlation function by rescal-
ing the transverse and radial distances usingD

A

andH�1

and fit them to the observed correlation function. There-
fore, when we fit the measured ⇠(�,⇡), the two distance
parameters of (D

A

, H�1) are added to the structure for-
mation parameter set of {G

�

, G
⇥

,�
p

, |f
R0

|,�
p

} discussed
in Sec. II B.

A. Measured ⇠(�,⇡) using DR11

Our measurements are based on those previously pre-
sented in [11] which follows a similar procedure to [10].
Briefly, in our analysis we utilise data release DR11 of

the Baryon Oscillation Spectroscopic Survey [BOSS; 32–
34] which is part of the larger Sloan Digital Sky Survey
[SDSS; 35, 36] program. From DR11 we focus our anal-
ysis on the Constant Stellar Mass Sample (CMASS) [37],
which contains 690,826 galaxies and covers the redshift
range z = 0.43 � 0.7 over a sky area of ⇠8,500 square
degrees with an e↵ective volume of V

e↵

⇠ 6.0Gpc3. The
CMASS galaxy sample is composed primarily of bright,
central galaxies, resulting in a highly biased (b ⇠ 2) se-
lection of mass tracers [38].
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Veff ∼ 6.0 Gpc3. The CMASS galaxy sample is composed
primarily of bright, central galaxies, resulting in a highly
biased (b ∼ 2) selection of mass tracers [52].
The redshift-space two-dimensional correlation function

ξðσ; πÞ of the BOSS DR11 galaxies was computed using
the standard Landy-Szalay estimator [53]. In the compu-
tation of this estimator we used a random point catalogue
that constitutes an unclustered but observationally repre-
sentative sample of the BOSS CMASS survey and contains
∼50 times as many randoms as we have galaxies.
The covariance matrix was obtained from 600 mock

catalogues based on second-order Lagrangian perturbation
theory (2LPT) [54,55]. The mocks reproduce the same
survey geometry and number density as the CMASS galaxy
sample. We obtain the covariance matrix using the same
treatment presented in our previous works [12,13].
We calculate the correlation function in 225 bins spaced

by 10 h−1Mpc in the range 0 < σ; π < 150h−1Mpc.
However, at small scales, if the nonperturbative effect of
FoG is underestimated, then the residual squeezing can be
misinterpreted as a variation inGθ or indeed fR0. We expect
the FoG effect to be increasingly important at smaller
scales, and so these measurements may be at risk of
misestimation. We therefore impose a conservative cut
on the measurements, excluding σcut < 40 h−1 Mpc and
scut < 50 h−1Mpc [12]. Indeed, [12] showed that cosmo-
logical parameter bias began to occur at smaller scales.

This reduces the number of measurement bins in σ and π
to Nbins ¼ 163.

B. Tests of theoretical templates

When the conservative cutoff scales of σcut ¼
40h−1Mpc and scut ¼ 50 h−1 Mpc are used for the analy-
sis, the effective range of scale in Fourier space becomes
k < 0.1Mpc−1. The power spectra of ΛCDM and fðRÞ
gravity models are presented in this range of scale in Fig. 1.
For the clustering scales considered in this likelihood
analysis, there are no deviations from ΛCDM. This implies
that fðRÞ gravity models with log jfR0j≲ −6 are effec-
tively equivalent to ΛCDM in this analysis. We take a
uniform prior on log jfR0j between −7 and −3.
We first test our pipeline of analysis by checking whether

it is possible to recover the ΛCDM limit log jfR0j≲ −6
using the mock catalogues based on ΛCDM. We use the
611 CMASS mock catalogues to measure central values of
ξðσ; πÞ and fit our theoretical fðRÞ templates to the
observed correlation function. The measured likelihood
function of log jfR0j is presented as a blue dotted curve in
the right panel of Fig. 4. The best fit log jfR0j indeed lies
within the ΛCDM limit of log jfR0j ≲ −6. There are no
mock galaxy catalogues based on fðRÞ gravity available so
we are not able to fully test our theoretical templates away
from the ΛCDM limit. The perturbation theory predictions
for the redshift space power spectrum in Fourier space

FIG. 4 (color online). The measured constraints on fR0, and their robustness to various tests, are presented. The measured likelihood
function appears in the top panels and the measured difference of χ2 is in the bottom panels. (Left panel) Results marginalizing over the
scale independent growth rate GΘ are shown by the black solid curve, while the constraints fixing GΘ ¼ 0.46, given by the Planck
concordance ΛCDM model, are blue dashed curves. The results for fR0 do not depend appreciably on the scale independent behavior.
(Right panel) The results also do not depend significantly on whether the initial power spectrum PðkÞ used matches the Planck (black
solid) or WMAP9 (black dashed) model. The blue dotted curve represents the results from analyzing galaxy clustering from ΛCDM
mock catalogues, verifying that jfR0j → 0 is recovered in this case.
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we are not able to fully test our theoretical templates away
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FIG. 4 (color online). The measured constraints on fR0, and their robustness to various tests, are presented. The measured likelihood
function appears in the top panels and the measured difference of χ2 is in the bottom panels. (Left panel) Results marginalizing over the
scale independent growth rate GΘ are shown by the black solid curve, while the constraints fixing GΘ ¼ 0.46, given by the Planck
concordance ΛCDM model, are blue dashed curves. The results for fR0 do not depend appreciably on the scale independent behavior.
(Right panel) The results also do not depend significantly on whether the initial power spectrum PðkÞ used matches the Planck (black
solid) or WMAP9 (black dashed) model. The blue dotted curve represents the results from analyzing galaxy clustering from ΛCDM
mock catalogues, verifying that jfR0j → 0 is recovered in this case.
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FIG. 2: Relative enhancement of the halo mass function in chameleon f(R) gravity with respect to the prediction for ΛCDM.
The environmental dependence is illustrated using the collapse density δc from Fig. 1 computed with the spherical collapse
model in §III B and applied to the Sheth-Tormen fit for ΛCDM simulations Eq. (53) (left-hand panel). These predictions are
averaged over the Eulerian environment defined in §III D (dashed line) and compared to the excursion set prediction (solid line)
(right-hand panel). Note that the N-body results at the low-mass end are contaminated by the inclusion of subhalos, which
are not identified and removed in the SO halo-finder employed.

Based on our results for δc from the spherical col-
lapse model in §III B applied to the Sheth-Tormen halo
mass function in §IVB, as an alternative determination
of νPPF, we suggest generalizing and redefining the PPF
peak threshold as

νPPF ≡
〈

δc(M, δenv)

S1/2(M)

〉

env

, (58)

where ⟨·⟩env denotes the environmental average. Note
that δc is determined using the linear ΛCDM growth
function to extrapolate the initial overdensity associated
with the collapse and S1/2 is the variance obtained for
ΛCDM. In this definition, the chameleon transition is
incorporated within δc(M, δenv) through the estimation
of the thin-shell thickness Eq. (19). The advantage of
this approach is that it is theoretically well motivated,
that νPPF may be determined without calibration of fit-
ting parameters to simulation results, and hence, that
it encompasses dependencies on cosmological parame-
ters and can easily be applied to other chameleon the-
ories. We compare the different approaches for comput-
ing νPPF in Fig. 3, finding a good qualitative agreement
between them and supporting the functional shape sug-
gested in the phenomenological PPF interpolation for-

mula Eq. (55).

V. CONCLUSION

We have studied the spherical collapse of a top-hat
overdensity in f(R) gravity, taking into account the
chameleon suppression of modifications in high-density
regions. The chameleon mechanism is approximated
by an estimate of the thickness of a thin shell inter-
polating the scalaron field between the constant spher-
ical halo overdensity and the constant spherical environ-
mental density. We implement this thickness estimation
to approximate the nonlinear evolution of the spherical
overdensity and the initial overdensity associated with
the collapse. The collapse density obtained by this pro-
cedure is environment- and mass-dependent.
We use excursion set theory to obtain the halo mass

function predicted by f(R) gravity and compare it to re-
sults from N -body simulations. We further apply the
peak threshold predicted by chameleon f(R) gravity to
the Sheth-Tormen fitting function for the halo mass func-
tions of ΛCDM N -body simulations, to describe the en-
hancement of the f(R) halo mass function relative to its
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FIG. 2: Relative enhancement of the halo mass function in chameleon f(R) gravity with respect to the prediction for ΛCDM.
The environmental dependence is illustrated using the collapse density δc from Fig. 1 computed with the spherical collapse
model in §III B and applied to the Sheth-Tormen fit for ΛCDM simulations Eq. (53) (left-hand panel). These predictions are
averaged over the Eulerian environment defined in §III D (dashed line) and compared to the excursion set prediction (solid line)
(right-hand panel). Note that the N-body results at the low-mass end are contaminated by the inclusion of subhalos, which
are not identified and removed in the SO halo-finder employed.

Based on our results for δc from the spherical col-
lapse model in §III B applied to the Sheth-Tormen halo
mass function in §IVB, as an alternative determination
of νPPF, we suggest generalizing and redefining the PPF
peak threshold as

νPPF ≡
〈

δc(M, δenv)

S1/2(M)

〉

env

, (58)

where ⟨·⟩env denotes the environmental average. Note
that δc is determined using the linear ΛCDM growth
function to extrapolate the initial overdensity associated
with the collapse and S1/2 is the variance obtained for
ΛCDM. In this definition, the chameleon transition is
incorporated within δc(M, δenv) through the estimation
of the thin-shell thickness Eq. (19). The advantage of
this approach is that it is theoretically well motivated,
that νPPF may be determined without calibration of fit-
ting parameters to simulation results, and hence, that
it encompasses dependencies on cosmological parame-
ters and can easily be applied to other chameleon the-
ories. We compare the different approaches for comput-
ing νPPF in Fig. 3, finding a good qualitative agreement
between them and supporting the functional shape sug-
gested in the phenomenological PPF interpolation for-

mula Eq. (55).

V. CONCLUSION

We have studied the spherical collapse of a top-hat
overdensity in f(R) gravity, taking into account the
chameleon suppression of modifications in high-density
regions. The chameleon mechanism is approximated
by an estimate of the thickness of a thin shell inter-
polating the scalaron field between the constant spher-
ical halo overdensity and the constant spherical environ-
mental density. We implement this thickness estimation
to approximate the nonlinear evolution of the spherical
overdensity and the initial overdensity associated with
the collapse. The collapse density obtained by this pro-
cedure is environment- and mass-dependent.
We use excursion set theory to obtain the halo mass

function predicted by f(R) gravity and compare it to re-
sults from N -body simulations. We further apply the
peak threshold predicted by chameleon f(R) gravity to
the Sheth-Tormen fitting function for the halo mass func-
tions of ΛCDM N -body simulations, to describe the en-
hancement of the f(R) halo mass function relative to its
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same energy range as our observations from XMM. This model has
as inputs the gas temperature, the cluster redshift, the cluster metal-
licity and a normalization, and provides the X-ray cluster flux. We
adopt a metallicity Z = 0.3 Z⊙ (Sato et al. 2011) throughout. Using
this model we generate fluxes for a range of temperatures which are
interpolated for use in our chameleon gravity model.

The chameleon parameters β2 and φ∞,2 are the same across the
two bins, as the modifications to gravity should be independent of
the cluster’s mass.

We performed an MCMC analysis using the EMCEE code
(Foreman-Mackey et al. 2013), which implements a Metropolis–
Hastings algorithm (MacKay 2003). We minimized the goodness
of fit using a χ2 statistic derived from joint fitting of both models
(see Appendix A).

Our MCMC run was a parallelized implementation using 128
walkers with 10 000 time steps. We removed the first 2000 iterations
as a ‘burn in’ phase.

4 R ESULTS

In Fig. 2, we show our measured X-ray and weak lensing profiles for
both X-ray temperature bins. Our X-ray surface brightness profiles
have been measured out to 1.2 × r200 with high signal to noise.
Likewise for our two weak lensing profiles, we have recovered a
shear signal out to 10 × r200 with high signal to noise. Also shown
in Fig. 2 are our best-fitting models for the each profile using the
parameters outlined in Section 3.5 and minimizing χ2 as described
in equation (A1). We show the 2D contours for constraints on model
parameters in Fig. D1.

In Fig. 3, we show the 2D constraints for β2 and φ∞,2. To generate
our constraints, we have marginalized over the measured likelihoods
of the nuisance parameters (those that are not β2 and φ∞,2). We are
able to do so as we are insensitive to the overall amplitude of
our profiles, only the profiles shape matters for our constraints. In
Fig. 3, we also show the dashed (dash–dotted) line the 95 per cent
(99 per cent) confidence limit excluded region from Terukina et al.

Figure 2. X-ray surface brightness profiles (left) and weak lensing (right) for the two bins of X-ray temperature: T < 2.5 keV (top) and T > 2.5 keV (bottom),
against radial distance normalized by r200, the radius at which the density is 200 times the critical density. We choose to show the modified gravity profiles with
the highest likelihood parameters, T I

0 = 12.6 keV, nI
0 = 2.0 × 10−2 cm−3, bI

1 = −0.42, r I
1 = 0.06 Mpc, M I

200 = 12.2 × 1014 M⊙, cI = 3.5, T II
0 = 7.8 keV,

nII
0 = 4.9 × 10−2 cm−3, bII

1 = −0.89, r II
1 = 0.05 Mpc, M II

200 = 13.7 × 1014 M⊙, cII = 3.8, β = 2, φ∞ = 2.1 × 10−4MPl.
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Figure 5. Mass profile from the T < 2.5 keV (T > 2.5 keV) cluster bin in blue (red). The shaded area is the 1σ allowed region from the weak lensing
measurement and the solid line is the thermal mass reconstructed from the X-rays. The dashed line shows the thermal mass with an additional non-thermal
component as discussed in the text. The vertical line is the upper extent of our X-ray data; to its right we have extrapolated the X-ray data.

With future X-ray measurements we will be able to fit out to a
larger distance, allowing us to better constrain the effect of non-
thermal pressure, which would be most prominent at large radii. We
also note that our weak lensing profiles have lower signal to noise
than the X-ray profiles; however, with future lensing surveys we will
be able to more accurately constrain these profiles also allowing us
to better characterize not only chameleon gravity but non-thermal
pressure too.

6 C O N C L U S I O N S

We have investigated the constraining power of stacked galaxy
cluster profiles for testing chameleon gravity. We have examined
58 X-ray-selected galaxy clusters, which have both good quality
weak lensing data from CFHTlenS and X-ray data from XCS.
After binning our clusters by X-ray temperature, we have gener-
ated weak lensing profiles and X-ray surface brightness profiles.
Chameleon gravity predicts an additional pressure existing within
clusters, which causes their gas component to become more com-
pressed than GR gravity predicts. We have therefore investigated
this phenomena by comparing the X-ray profile with the weak lens-
ing profile, which is unaffected by the fifth force. Using a mul-
tiparameter MCMC analysis we have obtained constraints on the
common chameleon parameters β and φ∞, which in turn lead to
constraints for |fR0|, a parameter charactering f(R) theories.

We find our results are competitive with other cosmological con-
straints on chameleon models. In particular, our constraints are an
order of magnitude stronger than those from the CMB (Raveri et al.
2014). They are comparable to Cataneo et al. (2014) which provides
|fR0| < 2.6 × 10−5 for n = 1, compared with our measurement of
|fR0| < 6 × 10−5, and |fR0| < 3.1 × 10−4 for n = 3 compared with
our measurement of |fR0| < 2 × 10−4, all at the 95 per cent CL. A
comparison of these constraints is shown in Table 1.

We examined the assumption of hydrostatic equilibrium by com-
paring the masses inferred from the X-ray observations with weak
lensing and found them to be consistent. Deviations from hydro-
static equilibrium would cause a disparity between the weak lensing
and X-rays with the opposite sign to that from the chameleon effect.

Table 1. Comparison of the constraints on
log10|fR0|.

Scale Scale log10|fR0|

Solar system pc −6
(Hu & Sawicki 2007)
Dwarf galaxies kpc −6.3
(Jain et al. 2013)
Coma cluster Mpc −4.2
(Terukina et al. 2014)
Cluster abundance Mpc −4.6 (n = 1)
(Cataneo et al. 2014) −3.5 (n = 3)
Cluster stack Mpc −4.2 (n = 1)
(This work) −3.7 (n = 3)
CMB Gpc −3.0
(Raveri et al. 2014)

We modelled a non-thermal pressure X-ray component, and given
current observational errors found this to be a subdominant effect
on our constraints.

As we are interested in the shape of the respective profiles, the ab-
solute mass of the stacked cluster, measured through both weak lens-
ing and X-rays, is a nuisance parameter which we have marginalized
over. We therefore are not sensitive to the relative biases between
these two techniques, such as reported in von der Linden et al.
(2014) and Hoekstra et al. (2015).

For the next generation of constraints via this method, we will
need detailed modified-gravity hydrodynamic simulations. These
will allow us to check a range of assumptions used in this analysis
such as hydrostaticity, non-thermal pressure, gas clumping in the
cluster outskirts, spherical symmetry and the reliability of the NFW
profile.

We find our constraint on |fR0| to be consistent with the literature,
and competitive at these cosmic scales and redshifts. We have there-
fore demonstrated that it is possible to constrain chameleon gravity
using stacked galaxy clusters; with the advent of wide-area lensing
surveys promising a much larger area, such as the Dark Energy Sur-
vey (DES; The Dark Energy Survey Collaboration 2005), the KIlo
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Figure 5. Mass profile from the T < 2.5 keV (T > 2.5 keV) cluster bin in blue (red). The shaded area is the 1σ allowed region from the weak lensing
measurement and the solid line is the thermal mass reconstructed from the X-rays. The dashed line shows the thermal mass with an additional non-thermal
component as discussed in the text. The vertical line is the upper extent of our X-ray data; to its right we have extrapolated the X-ray data.

With future X-ray measurements we will be able to fit out to a
larger distance, allowing us to better constrain the effect of non-
thermal pressure, which would be most prominent at large radii. We
also note that our weak lensing profiles have lower signal to noise
than the X-ray profiles; however, with future lensing surveys we will
be able to more accurately constrain these profiles also allowing us
to better characterize not only chameleon gravity but non-thermal
pressure too.

6 C O N C L U S I O N S

We have investigated the constraining power of stacked galaxy
cluster profiles for testing chameleon gravity. We have examined
58 X-ray-selected galaxy clusters, which have both good quality
weak lensing data from CFHTlenS and X-ray data from XCS.
After binning our clusters by X-ray temperature, we have gener-
ated weak lensing profiles and X-ray surface brightness profiles.
Chameleon gravity predicts an additional pressure existing within
clusters, which causes their gas component to become more com-
pressed than GR gravity predicts. We have therefore investigated
this phenomena by comparing the X-ray profile with the weak lens-
ing profile, which is unaffected by the fifth force. Using a mul-
tiparameter MCMC analysis we have obtained constraints on the
common chameleon parameters β and φ∞, which in turn lead to
constraints for |fR0|, a parameter charactering f(R) theories.

We find our results are competitive with other cosmological con-
straints on chameleon models. In particular, our constraints are an
order of magnitude stronger than those from the CMB (Raveri et al.
2014). They are comparable to Cataneo et al. (2014) which provides
|fR0| < 2.6 × 10−5 for n = 1, compared with our measurement of
|fR0| < 6 × 10−5, and |fR0| < 3.1 × 10−4 for n = 3 compared with
our measurement of |fR0| < 2 × 10−4, all at the 95 per cent CL. A
comparison of these constraints is shown in Table 1.

We examined the assumption of hydrostatic equilibrium by com-
paring the masses inferred from the X-ray observations with weak
lensing and found them to be consistent. Deviations from hydro-
static equilibrium would cause a disparity between the weak lensing
and X-rays with the opposite sign to that from the chameleon effect.

Table 1. Comparison of the constraints on
log10|fR0|.

Scale Scale log10|fR0|

Solar system pc −6
(Hu & Sawicki 2007)
Dwarf galaxies kpc −6.3
(Jain et al. 2013)
Coma cluster Mpc −4.2
(Terukina et al. 2014)
Cluster abundance Mpc −4.6 (n = 1)
(Cataneo et al. 2014) −3.5 (n = 3)
Cluster stack Mpc −4.2 (n = 1)
(This work) −3.7 (n = 3)
CMB Gpc −3.0
(Raveri et al. 2014)

We modelled a non-thermal pressure X-ray component, and given
current observational errors found this to be a subdominant effect
on our constraints.

As we are interested in the shape of the respective profiles, the ab-
solute mass of the stacked cluster, measured through both weak lens-
ing and X-rays, is a nuisance parameter which we have marginalized
over. We therefore are not sensitive to the relative biases between
these two techniques, such as reported in von der Linden et al.
(2014) and Hoekstra et al. (2015).

For the next generation of constraints via this method, we will
need detailed modified-gravity hydrodynamic simulations. These
will allow us to check a range of assumptions used in this analysis
such as hydrostaticity, non-thermal pressure, gas clumping in the
cluster outskirts, spherical symmetry and the reliability of the NFW
profile.

We find our constraint on |fR0| to be consistent with the literature,
and competitive at these cosmic scales and redshifts. We have there-
fore demonstrated that it is possible to constrain chameleon gravity
using stacked galaxy clusters; with the advent of wide-area lensing
surveys promising a much larger area, such as the Dark Energy Sur-
vey (DES; The Dark Energy Survey Collaboration 2005), the KIlo
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Figure 5. Mass profile from the T < 2.5 keV (T > 2.5 keV) cluster bin in blue (red). The shaded area is the 1σ allowed region from the weak lensing
measurement and the solid line is the thermal mass reconstructed from the X-rays. The dashed line shows the thermal mass with an additional non-thermal
component as discussed in the text. The vertical line is the upper extent of our X-ray data; to its right we have extrapolated the X-ray data.

With future X-ray measurements we will be able to fit out to a
larger distance, allowing us to better constrain the effect of non-
thermal pressure, which would be most prominent at large radii. We
also note that our weak lensing profiles have lower signal to noise
than the X-ray profiles; however, with future lensing surveys we will
be able to more accurately constrain these profiles also allowing us
to better characterize not only chameleon gravity but non-thermal
pressure too.

6 C O N C L U S I O N S

We have investigated the constraining power of stacked galaxy
cluster profiles for testing chameleon gravity. We have examined
58 X-ray-selected galaxy clusters, which have both good quality
weak lensing data from CFHTlenS and X-ray data from XCS.
After binning our clusters by X-ray temperature, we have gener-
ated weak lensing profiles and X-ray surface brightness profiles.
Chameleon gravity predicts an additional pressure existing within
clusters, which causes their gas component to become more com-
pressed than GR gravity predicts. We have therefore investigated
this phenomena by comparing the X-ray profile with the weak lens-
ing profile, which is unaffected by the fifth force. Using a mul-
tiparameter MCMC analysis we have obtained constraints on the
common chameleon parameters β and φ∞, which in turn lead to
constraints for |fR0|, a parameter charactering f(R) theories.

We find our results are competitive with other cosmological con-
straints on chameleon models. In particular, our constraints are an
order of magnitude stronger than those from the CMB (Raveri et al.
2014). They are comparable to Cataneo et al. (2014) which provides
|fR0| < 2.6 × 10−5 for n = 1, compared with our measurement of
|fR0| < 6 × 10−5, and |fR0| < 3.1 × 10−4 for n = 3 compared with
our measurement of |fR0| < 2 × 10−4, all at the 95 per cent CL. A
comparison of these constraints is shown in Table 1.

We examined the assumption of hydrostatic equilibrium by com-
paring the masses inferred from the X-ray observations with weak
lensing and found them to be consistent. Deviations from hydro-
static equilibrium would cause a disparity between the weak lensing
and X-rays with the opposite sign to that from the chameleon effect.

Table 1. Comparison of the constraints on
log10|fR0|.

Scale Scale log10|fR0|

Solar system pc −6
(Hu & Sawicki 2007)
Dwarf galaxies kpc −6.3
(Jain et al. 2013)
Coma cluster Mpc −4.2
(Terukina et al. 2014)
Cluster abundance Mpc −4.6 (n = 1)
(Cataneo et al. 2014) −3.5 (n = 3)
Cluster stack Mpc −4.2 (n = 1)
(This work) −3.7 (n = 3)
CMB Gpc −3.0
(Raveri et al. 2014)

We modelled a non-thermal pressure X-ray component, and given
current observational errors found this to be a subdominant effect
on our constraints.

As we are interested in the shape of the respective profiles, the ab-
solute mass of the stacked cluster, measured through both weak lens-
ing and X-rays, is a nuisance parameter which we have marginalized
over. We therefore are not sensitive to the relative biases between
these two techniques, such as reported in von der Linden et al.
(2014) and Hoekstra et al. (2015).

For the next generation of constraints via this method, we will
need detailed modified-gravity hydrodynamic simulations. These
will allow us to check a range of assumptions used in this analysis
such as hydrostaticity, non-thermal pressure, gas clumping in the
cluster outskirts, spherical symmetry and the reliability of the NFW
profile.

We find our constraint on |fR0| to be consistent with the literature,
and competitive at these cosmic scales and redshifts. We have there-
fore demonstrated that it is possible to constrain chameleon gravity
using stacked galaxy clusters; with the advent of wide-area lensing
surveys promising a much larger area, such as the Dark Energy Sur-
vey (DES; The Dark Energy Survey Collaboration 2005), the KIlo
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Figure 5. Mass profile from the T < 2.5 keV (T > 2.5 keV) cluster bin in blue (red). The shaded area is the 1σ allowed region from the weak lensing
measurement and the solid line is the thermal mass reconstructed from the X-rays. The dashed line shows the thermal mass with an additional non-thermal
component as discussed in the text. The vertical line is the upper extent of our X-ray data; to its right we have extrapolated the X-ray data.

With future X-ray measurements we will be able to fit out to a
larger distance, allowing us to better constrain the effect of non-
thermal pressure, which would be most prominent at large radii. We
also note that our weak lensing profiles have lower signal to noise
than the X-ray profiles; however, with future lensing surveys we will
be able to more accurately constrain these profiles also allowing us
to better characterize not only chameleon gravity but non-thermal
pressure too.

6 C O N C L U S I O N S

We have investigated the constraining power of stacked galaxy
cluster profiles for testing chameleon gravity. We have examined
58 X-ray-selected galaxy clusters, which have both good quality
weak lensing data from CFHTlenS and X-ray data from XCS.
After binning our clusters by X-ray temperature, we have gener-
ated weak lensing profiles and X-ray surface brightness profiles.
Chameleon gravity predicts an additional pressure existing within
clusters, which causes their gas component to become more com-
pressed than GR gravity predicts. We have therefore investigated
this phenomena by comparing the X-ray profile with the weak lens-
ing profile, which is unaffected by the fifth force. Using a mul-
tiparameter MCMC analysis we have obtained constraints on the
common chameleon parameters β and φ∞, which in turn lead to
constraints for |fR0|, a parameter charactering f(R) theories.

We find our results are competitive with other cosmological con-
straints on chameleon models. In particular, our constraints are an
order of magnitude stronger than those from the CMB (Raveri et al.
2014). They are comparable to Cataneo et al. (2014) which provides
|fR0| < 2.6 × 10−5 for n = 1, compared with our measurement of
|fR0| < 6 × 10−5, and |fR0| < 3.1 × 10−4 for n = 3 compared with
our measurement of |fR0| < 2 × 10−4, all at the 95 per cent CL. A
comparison of these constraints is shown in Table 1.

We examined the assumption of hydrostatic equilibrium by com-
paring the masses inferred from the X-ray observations with weak
lensing and found them to be consistent. Deviations from hydro-
static equilibrium would cause a disparity between the weak lensing
and X-rays with the opposite sign to that from the chameleon effect.

Table 1. Comparison of the constraints on
log10|fR0|.

Scale Scale log10|fR0|

Solar system pc −6
(Hu & Sawicki 2007)
Dwarf galaxies kpc −6.3
(Jain et al. 2013)
Coma cluster Mpc −4.2
(Terukina et al. 2014)
Cluster abundance Mpc −4.6 (n = 1)
(Cataneo et al. 2014) −3.5 (n = 3)
Cluster stack Mpc −4.2 (n = 1)
(This work) −3.7 (n = 3)
CMB Gpc −3.0
(Raveri et al. 2014)

We modelled a non-thermal pressure X-ray component, and given
current observational errors found this to be a subdominant effect
on our constraints.

As we are interested in the shape of the respective profiles, the ab-
solute mass of the stacked cluster, measured through both weak lens-
ing and X-rays, is a nuisance parameter which we have marginalized
over. We therefore are not sensitive to the relative biases between
these two techniques, such as reported in von der Linden et al.
(2014) and Hoekstra et al. (2015).

For the next generation of constraints via this method, we will
need detailed modified-gravity hydrodynamic simulations. These
will allow us to check a range of assumptions used in this analysis
such as hydrostaticity, non-thermal pressure, gas clumping in the
cluster outskirts, spherical symmetry and the reliability of the NFW
profile.

We find our constraint on |fR0| to be consistent with the literature,
and competitive at these cosmic scales and redshifts. We have there-
fore demonstrated that it is possible to constrain chameleon gravity
using stacked galaxy clusters; with the advent of wide-area lensing
surveys promising a much larger area, such as the Dark Energy Sur-
vey (DES; The Dark Energy Survey Collaboration 2005), the KIlo
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Narrowing constraints in future
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Figure 1. Signal-to-noise of power spectrum (dotted) and bispecrum (dashed) as function of red-
shift. Assuming a DESI-like experiment, the signal-to-noise ratios defined at eqs. (3.1) and (3.2) are
estimated at each redshift bin. The combined result of the power spectrum and bispectrum, taking
account of the cross covariance, is plotted as solid curve [see eq. (3.3) for definition], and, taking
account of the diagonals only, is plotted as dot-dashed curve.

respectively defined as,

(

S

N

)2

P

=
∑

k⃗

P̃ 2(k⃗)

CPP
(3.1)

(

S

N

)2

B

=
∑

k⃗1 ,⃗k2 ,⃗k3

B̃2(k⃗1, k⃗2, k⃗3)

CBB
. (3.2)

Similarly, we define the signal-to-noise ratio for the combined case:

(

S

N

)2

P+B

=
∑

k⃗

∑

k⃗1 ,⃗k2 ,⃗k3

tS⃗ C−1 S⃗. (3.3)

Here, the vector S⃗ is similarly defined as eq. (2.24), but the quantities P̃ obs and B̃obs are
replaced with P̃ and B̃ [eqs. (2.3) and (2.11)].

In figure 1, we plot three different (S/N) defined above and one (S/N) without the
full covariance combination, adopting the specific survey design of DESI. Note that in all
cases, the cut-off wavenumber k is set to be k = 0.1hMpc−1. The dotted and dash curves
represent the S/N for power spectrum and bispectrum, respectively. The signal-to-noise for
bispectrum is basically smaller than that for power spectrum. Nevertheless, the combination
of the bispectrum with the power spectrum helps to improve the signal-to-noise ratio, as
shown by the solid curve, and the improvement becomes significant at lower redshift. This is
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Combination of bispectrum 
helps to tightly constrain 

modified gravity with RSD

(by more than factor of two)



Summary
Testing modified gravity with large-scale structure observations

Model-independent test

crucial for consistent nonlinear modeling

Improving with future RSD:  measurement of bispectrum

Cosmological test of gravity is still innovative area that deserves 
further investigation both theoretically & observationally

Test of specify modified gravity

At linear regime

Beyond linear regime constraints

weaker

stronger


