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Effective Stress Tensor
• Constructed to respect all relevant symmetries 

(statistical isotropy, conservation of mass and 
momentum, Galilean invariance) 

• Captures all possible unknown microphysics 

• Cancels (renormalizes) UV sensitivity of SPT 
integrals, makes SPT well-defined 

• Rich additional physics at play (imperfect fluid 
interpretation, vorticity, memory effects)
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The Era of Precision Cosmology?

Rich in 
observational 
information

Number of Fourier modes at a given scale ~ k3 
Skew, kurtosis (3,4 point functions) stronger on these scales



Part I: The Covariance
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The Era of Precision Cosmology?

Rich in 
observational 
information

Number of Fourier modes at a given scale ~ k3
(expecting this to translate to extra independent info is actually naive!)



The covariance
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We compute the non-Gaussian contribution to the covariance of the matter power spectrum at one-
loop order in Standard Perturbation Theory (SPT), and using the framework of the effective field
theory (EFT) of large scale structure (LSS). The complete one-loop contributions are evaluated
for the first time, including the leading EFT corrections that involve seven independent operators,
of which four appear in the power spectrum and bispectrum. In the basis where the three new
operators are maximally uncorrelated, we find that two of them are suppressed at the few percent
level relative to other contributions, and may thus be neglected. We extract the single remaining
coefficient from N-body simulations, and obtain robust predictions for the non-Gaussian part of the
covariance C(ki, kj) up to ki + kj ⇠ 0.3 h/Mpc. The one-parameter prediction from EFT improves
over SPT, with the analytic reach in wavenumber more than doubled.

I. INTRODUCTION

In the era of precision cosmology, understanding the
formation of LSS is essential for gaining insight into
physics beyond the Standard Model and of the primor-
dial universe. To that end, a wide range of ongoing and
upcoming surveys are leveraging the synergy between
different probes of LSS to constrain properties of, for
instance, inflation, dark energy, and massive neutrinos
[1–11]. The process of extracting maximal information
about new physics from these surveys will require con-
certed theoretical interpretation, particularly beyond the
linear regime.

The simplest statistical measure of LSS is the two-
point correlation function of the density perturbation �,
or its Fourier transform, the power spectrum P (k), de-
fined as
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where the power spectrum depends only on the mag-
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Here, �ij is the Kronecker delta and T is the trispectrum,
the fourth-order connected moment of the density pertur-
bation. In the limit where the density field is Gaussian,
the covariance is expected to be diagonal and completely
determined by Eq. (3). However, even with Gaussian
initial conditions, gravitational interactions couple dif-
ferent Fourier modes and induce a non-Gaussian contri-
bution through the trispectrum [12–14]. At short dis-
tance scales, where much of the sensitivity of galaxy and
weak-lensing surveys is, mode-coupling becomes increas-
ingly relevant and understanding non-Gaussian correla-
tions becomes crucial for extracting cosmological param-
eters [15].

Thus far, understanding of the non-Gaussian covari-
ance has either relied on versions of the astrophysically-
motivated halo model [14, 15], or numerical simulations
of structure formation which are computationally expen-
sive because of the large number of realizations required
for statistical convergence [16–19]. While SPT may also
be employed, it lacks, for instance, a clear prescription
on how to treat modes in the non-linear regime [20]. Al-
ternative versions of this formalism attempt to improve
convergence by resumming a subclass of diagrams, by
using the Lagrangian formulation of the theory (as in-
spired by the Zel’dovich approximation [21]), or by other
approximation schemes [22–29]. However, many of these
schemes have no theoretical control on quantifying the
error of their approximations, are invalid near the onset
of shell crossing, and may not obey all the relevant sym-
metries of the system, such as Galilean invariance [20].
Recent work has shown that, in simplifying limits, many
of these formulations converge at sufficiently high order
to the same prediction, but still fail to capture relevant
effects from physics on smaller cosmological scales [30].
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***getting this quantity from N-body requires a 
large ensemble of simulations with slow statistical 

convergence— very expensive numerically!***
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This observable is ripe for tackling analytically!

We were the first to make a complete 1-loop prediction 
for the covariance in SPT… Let’s see if we can do 

better with EFT



Making an EFT prediction for 
the covariance, step by step
• Compute EFT operators at level of trispectrum (NNLO) and 

impose covariance configuration and angular averaging 

• 4 old + 3 new coefficients, take 4 as being already 
measured from one-loop EFT power spectrum and 
bispectrum 

• Are 3 EFT operators really necessary? Do both a naive 
theoretical expansion and PCA to see if they agree as a 
consistency check 

• Measure new EFT coefficient from N-body data where 
appropriate



Simulations of the 
Covariance

• Li, Hu, Takada (2014) 

• N = 3,584 x 500/h Mpc box 
simulations with 2563 particles, as 
well as higher resolution 
simulations (5123 particles) to test 
convergence and resolution 
dependence 

• uses Gadget 

• h = 0.7, ns = 0.96, Ωm = 0.286, Ωm 
= 0.047, σ8 = 0.82 

• errors on covariance from 
bootstrap resampling

• Blot, Corasaniti et al. (2014, 2015) 

• N = 12,288 x 656/h Mpc box 
simulations with 2563 particles 
and 96 x 656 Mpc box 
simulations with 10243 particles to 
test for resolution effects 

• uses RAMSES 

• h = 0.72, ns = 0.96, Ωm = 0.257, 
Ωm = 0.043, σ8 = 0.8 

• errors on covariance from Wishart 
distribution (verified to ~10%)



Fitting Procedure
• Following Foreman, Perrier, Senatore (2015) 

• Fit up to kmax where chi-squared per dof 
saturates to unity (corresponding to a high 
p-value) 

• Also ensure that as the fitting window 
approaches kmax the measured EFT 
coefficients converge within reported 
measurement errors 

• Exclude points at extremely low k where 
shot noise and systematics may be large 
and where cosmic variance is high anyway 

• Do PCA to identify how many EFT shapes 
are actually necessary, ensure that the chi-
squared is statistically indistinguishable 
from full fit 

kmin = 0.03 kmax = 0.25

k1

k2

(symmetric in k1 and k2)

(Li et al.)(Li et al.)



Results for Li et al.: 
0-parameter SPT p-value ~ 10-4 

1-parameter EFT p-value ~1 
 

Bertolini, KS, Solon, Walsh, Zurek 1512.07630 v2



Results for Blot et al.: 
SPT 0-parameter p-value ~1 (to k=0.25!!)

Bertolini, KS, Solon, Walsh, Zurek 1512.07630 v2
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What is going on here?
Li data 

Blot data 
Li SPT (1 loop) 

Blot SPT (1 loop)

*note power spectrum normalization is the same for both 



Source of differences:
• Differences in cosmology (probably not, based on 

what we learn from SPT similarities) 

• Volume/boundary effects and separating out SSC 
from coupling to modes inside volume 

• Mass resolution effects 

• Gadget vs. RAMSES 

• ????          for I am but a humble theorist :)



Theoretical “pros and cons”

• SPT covariance breaks down 
where SPT power spectrum 
breaks down 

• Fits with story of previous EFT 
of LSS literature 

• Fit seems to work rather well 
beyond fitting window 

• principle component from 
data agrees with one from 
theory

• Lots of ways to be wrong, only 
one way to be right— too 
much of a coincidence for SPT 
to work so well 

• other evidence in literature 
suggests trispectrum is less 
sensitive to gravitational non-
linearities than other 
observables 

• SPT-only is incredibly 
convenient from a practical 
point of view

Li et al. Blot et al.



Upshot: need independent way to 
check analytics and simulations.  
A classic application of the EFT is 

not the way to go in this case!



Part II: Paths Forward

*Disclaimer: this part of the talk is slightly speculative



k1 k2

k3

k4

k1 k2

k3k4

F2

F2

F2

k1 k2

k3

k4

F3k1 k2

k3

k4

F̃3 F̃2

F̃1 F̃1

T3̃111 T2̃211

T1̃221 T1̃311

One idea: two-loop power spectrum 
as a check of other EFT observables

Checking measurements of bispectrum, covariance EFT 
coefficients is a check of the predictive abilities of the theory!



Another idea: see if we can measure 
the trispectrum from a single simulation 

• Free from complicated systematics incurred by 
having a large ensemble of simulations 

• the trispectrum is a worthwhile and interesting 
observable in its own right (carries information 
about primordial non-Gaussianity from inflation) 

• Challenge: the trispectrum has never been 
measured from a simulation!



Measuring the matter trispectrum
• make a theory prediction (for 

both 1-loop SPT and EFT) 

• Project theory prediction onto 
separable basis of shapes 

• project N-body data onto 
same shapes 

• see if principle components 
expected from EFT are also 
principle components of the 
data

shapes from
 Regan, Shellard, Fergusson (2010)

Bertolini, KS, Solon, Zurek 1604.01770



Conclusions
• We have made first SPT and 

EFT one-loop prediction for both 
covariance and trispectrum 

• EFT relies on simulations which 
can have systematics 

• On the other hand, we want 
theory for checking results of 
simulations on mildly nonlinear 
scales (it would be amazing if 
SPT accurately reproduced the 
covariance up to k~0.3!) 

• Need to think creatively about 
independent ways to access 
same information


