The TRG and coarse-grained PT's

Massimo Pietroni - INFN, Padova

Outline

* Mode coupling or, where SPT fails
* The TRG: IR, intermediate, and UV effects
* Scalar field (axion/fuzzy) DM

Mode coupling-Response functions

The nonlinear PS is a functional of the initial one (in a given cosmology and assuming no PNG):

SPT is an expansion around $P^{0}(q)=0$

$$
P_{a b}\left[P^{0}\right](\mathbf{k} ; \eta)=\left.\sum_{n=1}^{\infty} \frac{1}{n!} \int d^{3} q_{1} \cdots d^{3} q_{n} \frac{\delta^{n} P_{a b}\left[P^{0}\right](\mathbf{k} ; \eta)}{\delta P^{0}\left(\mathbf{q}_{1}\right) \cdots \delta P^{0}\left(\mathbf{q}_{n}\right)}\right|_{P^{0}=0} P^{0}\left(\mathbf{q}_{1}\right) \cdots P^{0}\left(\mathbf{q}_{n}\right)
$$

```
\(\mathrm{n}=1\) linear order (= " 0 -loop")
n=2 "1-loop"
```

$a, \cdots, d=1$ density
$a, \cdots, d=2$ velocity div.

Mode coupling-Response functions

Let's instead expand around a reference PS: $P^{0}(q)=\bar{P}^{0}(q)$

$$
\begin{aligned}
P_{a b}\left[P^{0}\right](\mathbf{k} ; \eta) & =P_{a b}\left[\bar{P}^{0}\right](\mathbf{k} ; \eta) \\
& +\left.\sum_{n=1}^{\infty} \frac{1}{n!} \int d^{3} q_{1} \cdots d^{3} q_{n} \frac{\delta^{n} P_{a b}\left[P^{0}\right](\mathbf{k} ; \eta)}{\delta P^{0}\left(\mathbf{q}_{1}\right) \cdots \delta P^{0}\left(\mathbf{q}_{n}\right)}\right|_{P^{0}=\bar{P}^{0}} \delta P^{0}\left(\mathbf{q}_{1}\right) \cdots \delta P^{0}\left(\mathbf{q}_{n}\right), \\
& =P_{a b}\left[\bar{P}^{0}\right](\mathbf{k} ; \eta)+\int \frac{d q}{q} K_{a b}(k, q ; \eta) \delta P^{0}(q)+\cdots, \quad \delta P^{0}(\mathbf{q}) \equiv P^{0}(\mathbf{q})-\bar{P}^{0}(\mathbf{q})
\end{aligned}
$$

Linear response function: $\left.K_{a b}(k, q ; \eta) \equiv q^{3} \int d \Omega_{\mathbf{q}} \frac{\delta P_{a b}\left[P^{0}\right](\mathbf{k} ; \eta)}{\delta P^{0}(\mathbf{q})}\right|_{P^{0}=\overline{P^{0}}}$

Non-perturbative (gets contributions from all SPT orders)

Key object for more efficient interpolators ?

IR and UV screening

Sensitivity of the nonlinear PS at scale k on a change of the initial PS at scale q:

$$
K(k, q ; z)=q \frac{\delta P^{\mathrm{nl}}(k ; z)}{\delta P^{\operatorname{lin}}(q ; z)}
$$

IR: "Galilean invariance"

$$
K(k, q ; z) \sim q^{3}
$$

Peloso, MP 1302.0223
PT overpredicts the effect of UV scales on intermediate ones

Nishimichi, Bernardeau, Taruya 1411.2970
... Little, Weinberg, Park, 1991

The non-perturbative LRF

$$
\begin{aligned}
K_{a b}(k, q ; \eta) & =q \delta_{D}(k-q) G_{a c}\left(k ; \eta, \eta_{i n}\right) u_{c} G_{b d}\left(k ; \eta, \eta_{i n}\right) u_{d} \\
& -\frac{1}{2} \frac{q^{3}}{(2 \pi)^{3}} \int d \Omega_{\mathbf{q}}\left\langle\varphi_{a}(\mathbf{k} ; \eta) \chi_{c}\left(-\mathbf{q} ; \eta_{i n}\right) \chi_{d}\left(\mathbf{q} ; \eta_{i n}\right) \varphi_{b}(-\mathbf{k} ; \eta)\right\rangle_{c}^{\prime} u_{c} u_{d}
\end{aligned}
$$

$$
G_{a b}\left(k ; \eta, \eta_{i n}\right)=\left\langle\frac{\delta \varphi_{a}(\mathbf{k}, \eta)}{\delta \varphi_{b}\left(\mathbf{k}, \eta_{i n}\right)}\right\rangle^{\prime}=-i\left\langle\varphi_{a}(\mathbf{k}, \eta) \chi_{b}\left(-\mathbf{k}, \eta_{i n}\right)\right\rangle^{\prime}
$$

UV screening

The effect of virialized structures on larger scales is screened (Peebles '80, Baumann et al 1004.2488, Blas et al 1408.2995).

However, the departure from the PT predictions starts at small q's:
is it only a virialization effect?

UV lessons

* SPT fails when loop momenta become higher than the nonlinear scale ($\mathrm{q} \gtrsim 0.4 \mathrm{~h} / \mathrm{Mpc}$)
* The real response to modifications in the UV regime is mild
* Most of the cosmology dependence is on intermediate scales

The nonlinear PS

The TRG

apply the equation of motion

$$
\left(\delta_{a b} \partial_{\eta}+\Omega_{a b}\right) \varphi_{b}(\mathbf{k}, \eta)=I_{\mathbf{k}, \mathbf{q}_{1}, \mathbf{q}_{2}} \mathrm{e}^{\eta} \gamma_{a b c}\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \varphi_{b}\left(\mathbf{q}_{1}, \eta\right) \varphi_{c}\left(\mathbf{q}_{2}, \eta\right)-h_{a}(\mathbf{k}, \eta)
$$

to the (nonlinear) PS
$\partial_{\eta} P_{a b}(k ; \eta, \eta)=\left[-\Omega_{a c} P_{c b}(k ; \eta, \eta)+\mathrm{e}^{\eta} I_{\mathbf{k}, \mathbf{q}_{1}, \mathbf{q}_{2}} \gamma_{a c d}\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) B_{c d b}\left(q_{1}, q_{2}, k ; \eta, \eta, \eta\right)\right.$

$$
\left.-\left\langle h_{a}(\mathbf{k}, \eta) \varphi_{b}(-\mathbf{k}, \eta)\right\rangle^{\prime}\right]+(a \leftrightarrow b)
$$

Virtues

$$
\Omega(\mathbf{k}, \eta)=\left(\begin{array}{cc}
1 & -1 \\
-\frac{3}{2} \Omega_{m}(\eta)(1+\mathcal{B}(\mathbf{k}, \eta)) & 2+\frac{\mathcal{H}^{\prime}}{\mathcal{H}}+\mathcal{A}(\mathbf{k}, \eta)
\end{array}\right) \quad \eta=\log \left(\frac{a}{a_{0}}\right)
$$

Time and scale-dependent growth

Treats the decaying mode(s) correctly

Good for multi-species (CDM+neutrinos, B+CDM, DM+Halo, modified GR...), and for PNG
"Galilean" invariant (equal time correlators)

Can be fast (see later)

The Full Bispectrum

Closing the loops

$$
I_{\mathbf{k}, \mathbf{q}_{1}, \mathbf{q}_{2}} \gamma_{a c d}\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) B_{c d b}\left(q_{1}, q_{2}, k ; \eta, \eta, \eta\right)
$$

Simplest Truncation

Computing the bispectrum by a truncated TRG equation (trispectrum=0) gives

Neutrinos with simplest truncation

Belforti, Noda, MP, in progress

Next Truncation: including the trispectrum

differs from SPT starting from 3-loops
but still misses a crucial effect

Juergens, Bartelmann, 2012

Improving P^{P}

$$
P_{a b}^{P}(k, \eta)=G_{a c}\left(k ; \eta, \eta_{i n}\right) G_{b d}\left(k ; \eta, \eta_{i n}\right) u_{b} u_{d} P^{0}(k)
$$

$\partial_{\eta} P_{a b}^{P}(k ; \eta, \eta)=-\Omega_{a c} P_{c b}^{P}(k ; \eta, \eta)-\Omega_{b c} P_{a c}^{P}(k ; \eta, \eta)$
Exact equation

$$
+\int_{\eta_{i n}} d s\left[\Sigma_{a c}(k ; \eta, s) P_{c b}^{P}(k ; s, \eta)+\Sigma_{b c}(k ; \eta, s) P_{a c}^{P}(k ; \eta, s)\right]
$$

$$
\Sigma_{a b}(k ; \eta, s) \rightarrow \Sigma_{a b}^{1-l o o p}(k ; \eta, s) \quad \text { for } \quad k \rightarrow 0
$$

$\Sigma_{a b}(k ; \eta, s) \rightarrow-k^{2} \sigma_{v}^{2}(z) e^{\eta+s} g_{a b}(\eta ; s) \quad$ for $\quad k \rightarrow \infty \quad$ (exact factorization,

Anselmi, Matarrese, MP, 1011.4477
Peloso, MP, Viel, Villaescusa-Navarro, in preparation

Zel'dovich and beyond

Large k limit: Zel'dovich Small k limit: 1-loop
Interpolation built in the equation!

How to include Bulk Motions

$$
\bar{\delta}_{\alpha}(\mathrm{x}, \tau)=\delta_{\alpha}\left(\mathrm{x}-\mathrm{D}_{\alpha}(\mathrm{x}, \tau), \tau\right) \quad \mathrm{D}_{\alpha}(\mathrm{x}, \tau) \equiv \int_{\tau_{i, i}}^{\tau} d \tau^{\prime} \mathrm{v}_{\alpha, \operatorname{long}}\left(\mathrm{x}, \tau^{\prime}\right) \simeq \mathbf{D}_{\alpha}(\tau)
$$

$$
\begin{aligned}
\left\langle\delta_{\alpha}(\mathbf{k}, \tau) \delta_{\alpha}\left(\mathbf{k}^{\prime}, \tau^{\prime}\right)\right\rangle & =\left\langle\bar{\delta}_{\alpha}(\mathbf{k}, \tau) \bar{\delta}_{\alpha}\left(\mathbf{k}^{\prime}, \tau^{\prime}\right)\right\rangle\left\langle e^{-i \mathbf{k} \cdot\left(\mathbf{D}_{\alpha}(\tau)-\mathbf{D}_{\alpha}\left(\tau^{\prime}\right)\right)}\right\rangle \\
& =\left\langle\bar{\delta}_{\alpha}(\mathbf{k}, \tau) \bar{\delta}_{\alpha}\left(\mathbf{k}^{\prime}, \tau^{\prime}\right)\right\rangle e^{\frac{-k^{2} \sigma_{v}^{2}\left(D(\tau)-D\left(\tau^{\prime}\right)\right)^{2}}{2}}
\end{aligned}
$$

$$
\sigma_{v}^{2}=-\frac{1}{3 \mathcal{H}^{2} f^{2}} \int^{\Lambda} d^{3} q\left\langle v_{\text {long }}^{i}(q) v_{\text {long }}^{i}(q)\right\rangle^{\prime}=\frac{1}{3} \int^{\Lambda} d^{3} q \frac{P^{0}(q)}{q^{2}}
$$

Resummations (Zel'dovich)

Large scale flows and BAO's

reconstruction

Seo et al, 0910.5005, Padmanabhan et al 1202.0090, Tassev, Zaldarriaga 1203.6066, ...

Effect on the Correlation Function

Most of the information on the BAO peak is contained in the propagator part

The widening of the peak can be reproduced by Zel'dovich approximation (and improvements of it)

The widening of the peak contains robust physical information (not a parameter to marginalize!)

Peloso, MP, Viel, Villaescusa-Navarro, 1505.07477

(simplified) Zel'dovich approximation

$$
\begin{aligned}
& G^{Z e l d}(k, z)=\mathrm{e}^{-\frac{k^{2} \sigma_{v}^{2}(z)}{2}} \\
& \sigma_{v}^{2}(z)=\frac{1}{3} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{P^{l i n}(q, z)}{q^{2}}
\end{aligned}
$$

$$
P_{11}^{P}(k, z)=e^{-\frac{k^{2} \sigma_{v}^{2}(z)}{2}} P^{l i n}(k ; z)
$$

linear velocity dispersion: contains information on linear PS, growth factor,...

$$
\begin{aligned}
& \delta \xi(R)=\frac{1}{2 \pi^{2}} \int d q q^{2} \delta P^{l i n}(q)\left(\frac{\sin (q R)}{q R} e^{-q^{2} \sigma_{v}^{2}}-\frac{1}{3} \frac{\xi_{2}(R)}{q^{2} R^{2}}\right) \\
& \xi_{n}(R) \equiv \frac{1}{2 \pi^{2} R} \int_{0}^{\infty} d q q(q R)^{n} \sin (q R) P(q)
\end{aligned}
$$

Redshift ratios

Peloso, MP, Viel, Villaescusa-Navarro, 1505.07477

Effect of Massive neutrinos on BAO peak

$$
P_{11}^{P}(k, z)=e^{-\frac{k^{2} \sigma_{v}^{2}(z)}{2}} P^{l i n}(k ; z)
$$

increasing neutrino masses,
Plin decreases, but also velocity dispersion decreases.

$$
\begin{array}{lll}
\sum m_{\nu}=0.15 & \mathrm{eV} & \downarrow 0.6 \% \\
\sum m_{\nu}=0.3 & \mathrm{eV} & \uparrow 1.2 \%
\end{array}
$$

Peloso, MP, Viel, Villaescusa-Navarro, 1505.07477

Massive neutrinos

Peloso, MP, Viel, Villaescusa-Navarro, 1505.07477

Dealing with the MC

$$
\begin{aligned}
& P_{a b}\left(k ; \eta, \eta^{\prime}\right)=G_{a c}\left(k ; \eta, \eta_{i n}\right) G_{b d}\left(k ; \eta^{\prime}, \eta_{i n}\right) P^{0}(k) u_{c} u_{d}+ \\
& \int_{\eta_{\text {inn }}} d s d s^{\prime} G_{a c}(k ; \eta, s) G_{b d}\left(k ; \eta^{\prime}, s^{\prime}\right) \Phi_{c d}\left(k ; s, s^{\prime}\right) \\
& \equiv P_{a b}^{P}\left(k ; \eta, \eta^{\prime}\right)+P_{a b}^{M C}\left(k ; \eta, \eta^{\prime}\right) .
\end{aligned}
$$

Putting everything together: TRG with IR resummation and UV sources

$$
\partial_{\eta} P_{a b}^{M C}(k ; \eta, \eta)=-\Omega_{a c} P_{c b}^{M C}(k ; \eta) \quad \text { linear growth }
$$

$$
+\int^{\eta} d s \Sigma_{a c}(k ; \eta, s) P_{c b}^{M C}(k ; s, \eta) \quad \text { IR (propagator) effects }
$$

$$
+e^{\eta} \int d^{3} q \gamma_{a c d}(k, q) B_{c d b}^{M C}(q, k ; \eta) \quad \text { Intermediate scales: (resummed) SPT }
$$

$$
\begin{gathered}
-\left\langle h_{a}(\mathbf{k}, \eta) \varphi_{b}^{M C}(-\mathbf{k}, \eta)\right\rangle \quad \text { UV sources (from Nbody) } \\
+(a \leftrightarrow b)
\end{gathered}
$$

Improved TRG

IR resummation for P^{MC}

Sigma included, Phi @ 1-loop, no UV sources
No hidden parameters. As fast as a 1-loop SPT computation

Beyond 1-loop $\Phi_{a b}\left(k ; s, s^{\prime}\right)$

large k

leading contributions to

 Phi:

1 "hard" loop momentum, n-1 "soft"

ones

$$
\left.\tilde{\Phi}_{a b}\left(k ; s, s^{\prime}\right) \rightarrow e^{-\frac{-a_{0}^{2}}{2}\left(e^{e}-e^{\prime}\right)}\right)^{2}\left[\Phi_{a b}^{(1)}\left(k ; s, s^{\prime}\right)+\left(k^{2} \sigma_{v}^{2} e^{s+s^{s}}\right)^{2} P(k) u_{a} u_{b}\right]
$$

Can be obtained in eRPT: tree-level=UV limit

BAO scales

large k

One parameter

$$
\tilde{\Phi} G_{a b}^{A}(k ; \eta)+\frac{\left(\frac{k}{k}\right)^{4}}{1+\left(\frac{k}{k}\right)^{4}} \tilde{\Phi} G_{a b}^{B}(k ; \eta)
$$

"1loop"
"higher orders"

with resummations of the MC part

Anselmi, Lopez-Nacir, Sefusatti, 2014

Dealing with the UV

* General idea: take the UV physics from N-body simulations and use (resummed) PT only for the large and intermediate scales

Physics at k must be independent on L, L_uv ("Wilsonian approach")

Expansion in sources:

$$
\langle\delta \delta\rangle_{J}=\langle\delta \delta\rangle_{J=0}+\langle\delta J \delta\rangle_{J=0}+\frac{1}{2}\langle\delta J J J\rangle_{J=0}+\cdots
$$

Vlasov Equation

Liouville theorem+ neglect non-gravitational interactions:

$$
\frac{d}{d \tau} f_{m i c}=\left[\frac{\partial}{\partial \tau}+\frac{p^{i}}{a m} \frac{\partial}{\partial x^{i}}-a m \nabla_{x}^{i} \phi(\mathbf{x}, \tau)\right] f_{m i c}(\mathbf{x}, \mathbf{p}, \tau)=0
$$

moments:
$n_{\text {mic }}(\mathbf{x}, \tau)=\int d^{3} p f_{\text {mic }}(\mathbf{x}, \mathbf{p}, \tau)$
density
$\mathbf{v}_{m i c}(\mathbf{x}, \tau)=\frac{1}{n_{m i c}(\mathbf{x}, \tau)} \int d^{3} p \frac{\mathbf{p}}{a m} f_{m i c}(\mathbf{x}, \mathbf{p}, \tau)$
velocity
$\sigma_{m i c}^{i j}(\mathbf{x}, \tau)=\frac{1}{n_{m i c}(\mathbf{x}, \tau)} \int d^{3} p \frac{p^{i}}{a m} \frac{p^{j}}{a m} f_{m i c}(\mathbf{x}, \mathbf{p}, \tau)-v_{m i c}^{i}(\mathbf{x}, \tau) v_{m i c}^{j}(\mathbf{x}, \tau) \quad \begin{gathered}\text { velocity } \\ \text { dispersion }\end{gathered}$

From particles to fluids

Buchert, Dominguez, '05, Pueblas Scoccimarro, '09, Baumann et al. '10 M.P., G. Mangano, N. Saviano, M. Viel, 1108.5203, Carrasco, Hertzberg, Senatore,1206.2976 . Manzotti, Peloso, M.P., Viel, Villaescusa Navarro, 1407.1342, Hulemann, Kopp, 1407.4810 ...

Coarse-grained Vlasov equation

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial \tau}+\frac{p^{i}}{a m} \frac{\partial}{\partial x^{i}}-a m \nabla_{x}^{i} \phi(\mathbf{x}, \tau) \frac{\partial}{\partial p^{i}}\right] f(\mathbf{x}, \mathbf{p}, \tau)=} \\
& \operatorname{am}\left[\left\langle\frac{\partial}{\partial p^{i}} f_{m i c} \nabla^{i} \phi_{m i c}\right\rangle_{L_{U V}}(\mathbf{x}, \mathbf{p}, \tau)-\frac{\partial}{\partial p^{i}} f(\mathbf{x}, \mathbf{p}, \tau) \nabla_{x}^{i} \phi(\mathbf{x}, \tau)\right] \\
& \langle g\rangle_{L_{U V}}(\mathbf{x}) \equiv \frac{1}{V_{U V}} \int d^{3} y \mathcal{W}\left(y / L_{U V}\right) g(\mathbf{x}+\mathbf{y}) \\
& \phi=\left\langle\phi_{m i c}\right\rangle_{L_{U V}} \\
& f=\left\langle f_{m i c}\right\rangle_{L_{U V}}
\end{aligned}
$$

Vlasov equation in the L_uv $\rightarrow 0$ limit!
Taking moments...

Exact large scale dynamics for density and

velocity fields

$$
\begin{aligned}
& \frac{\partial}{\partial \tau} \delta(\mathbf{x})+\frac{\partial}{\partial x^{i}}\left[(1+\delta(\mathbf{x})) v^{i}(\mathbf{x})\right]=0 \\
& \frac{\partial}{\partial \tau} v^{i}(\mathbf{x})+\mathcal{H} v^{i}(\mathbf{x})+v^{k}(\mathbf{x}) \frac{\partial}{\partial x^{k}} v^{i}(\mathbf{x})=-\nabla_{x}^{i} \phi(\mathbf{x})-\underline{J_{\sigma}^{i}(\mathbf{x})-J_{1}^{i}(\mathbf{x})} \\
& \nabla^{2} \phi(\mathbf{x})=\frac{3}{2} \Omega_{M} \mathcal{H}^{2} \delta(\mathbf{x}) \\
& n(\mathbf{x})=n_{0}(1+\delta(\mathbf{x}))=n_{0}\left(1+\left\langle\delta_{\text {mic }}\right\rangle(\mathbf{x})\right) \\
& v^{i}(\mathbf{x})=\frac{\left\langle\left(1+\delta_{\text {mic }}\right) v_{\text {mic }}^{i}\right\rangle(\mathbf{x})}{1+\delta(\mathbf{x})}
\end{aligned}
$$

external input on UV-physics needed

$$
\left\{\begin{array}{l}
J_{\sigma}^{i}(\mathbf{x}) \equiv \frac{1}{n(\mathbf{x})} \frac{\partial}{\partial x^{k}}\left(n(\mathbf{x}) \sigma^{k i}(\mathbf{x})\right) \\
J_{1}^{i}(\mathbf{x}) \equiv \frac{1}{n(\mathbf{x})}\left(\left\langle n_{m i c} \nabla^{i} \phi_{\text {mic }}\right\rangle(\mathbf{x})-n(\mathbf{x}) \nabla^{i} \phi(\mathbf{x})\right)
\end{array}\right.
$$

Measuring the sources in Nbody simulation Manzotti, Peloso, MP,
Villaescusa-Navarro, Viel, 1407.1342

COSMOLOGY DEPENDENCE

Simulation Suite

Name	Ω_{m}	Ω_{b}	Ω_{Λ}	h	n_{s}	$A_{s}\left[10^{-9}\right]$
REF	0.271	0.045	0.729	0.703	0.966	2.42
A_{s}^{-}	0.271	0.045	0.729	0.703	0.966	1.95
A_{s}^{+}	0.271	0.045	0.729	0.703	0.966	3.0
n_{s}^{-}	0.271	0.045	0.729	0.703	0.932	2.42
n_{s}^{+}	0.271	0.045	0.729	0.703	1.000	2.42
Ω_{m}^{-}	0.247	0.045	0.753	0.703	0.966	2.42
Ω_{m}^{+}	0.289	0.045	0.711	0.703	0.966	2.42

$$
L_{b o x}=512 \mathrm{Mpc} / \mathrm{h} \quad N_{\text {particles }}=(512)^{3}
$$

Ratios of UV source correlators

$\frac{\langle J \delta\rangle_{i}}{\langle J \delta\rangle_{R E F}}$

From N-body

Scale-independent!!

Rescale using PT information

Amplitude rescaling captured by PT!!

Putting everything together: TRG with IR resummation and UV sources

$$
\partial_{\eta} P_{a b}^{M C}(k ; \eta, \eta)=-\Omega_{a c} P_{c b}^{M C}(k ; \eta) \quad \text { linear growth }
$$

$$
+\int^{\eta} d s \Sigma_{a c}(k ; \eta, s) P_{c b}^{M C}(k ; s, \eta) \quad \text { IR (propagator) effects }
$$

$$
+e^{\eta} \int d^{3} q \gamma_{a c d}(k, q) B_{c d b}^{M C}(q, k ; \eta) \quad \text { Intermediate scales: (resummed) SPT }
$$

$$
\begin{gathered}
-\left\langle h_{a}(\mathbf{k}, \eta) \varphi_{b}^{M C}(-\mathbf{k}, \eta)\right\rangle \quad \text { UV sources (from Nbody) } \\
+(a \leftrightarrow b)
\end{gathered}
$$

Improved TRG

Strategy

IR from Sigma (no parameter)

Intermediate scales from Phi in 1-loop SPT (up to loop momentum L)

UV from N-body sources (for loop momenta larger than L)

The UV impact

L-dependence is a 2-loop effect: renormalisation scale dependence Should improve at higher orders
L fixed at once for all redshifts
Time consuming as a 1-loop!

Scalar field (axion-like) DM

$$
\left(\square-m_{a}^{2}\right) \phi=0 \quad \square=-(1-2 V)\left(\partial_{t}^{2}+3 H \partial_{t}\right)+a^{-2}(1+2 V) \nabla^{2}-4 \dot{V} \partial_{t}
$$

$m_{a} \gg H \quad$ Averaging over fast oscillations: CDM candidate

$$
\begin{aligned}
& \phi=\left(m_{a} \sqrt{2}\right)^{-1}\left(\psi e^{-i m_{a} t}+\psi^{*} e^{i m_{a} t}\right) \\
& i \dot{\psi}-3 i H \psi / 2+\left(2 m_{a} a^{2}\right)^{-1} \nabla^{2} \psi-m_{a} V \psi=0
\end{aligned}
$$

Perturbations

$$
\begin{gathered}
\psi=R e^{i S} \rho_{a}=R^{2} \\
\overrightarrow{v_{a}}=\left(m_{a} a\right)^{-1} \nabla S \\
\dot{\overline{\rho_{a}}}+3 H \overline{\rho_{a}}=0 \\
\dot{\delta_{a}}+a^{-1} \overrightarrow{v_{a}} \cdot \nabla \delta_{a}+a^{-1}\left(1+\delta_{a}\right) \nabla \cdot \overrightarrow{v_{a}}=0, \\
\dot{\overrightarrow{v_{a}}}+H \overrightarrow{v_{a}}+a^{-1}\left(\overrightarrow{v_{a}} \cdot \nabla\right) \overrightarrow{v_{a}}=-a^{-1} \nabla(V+Q) \\
Q=-\frac{1}{2 m_{a}^{2} a^{2}} \frac{\nabla^{2} \sqrt{1+\delta_{a}}}{\sqrt{1+\delta_{a}}} . \quad \text { "Quadelung } \\
\text { "Quan" term, deviations from CDM }
\end{gathered}
$$

Linear Theory

$$
\frac{\partial \delta_{a}(\mathbf{k}, \tau)}{\partial \tau}+\theta(\mathbf{k}, \tau)=0
$$

$$
\frac{\partial \theta(\mathbf{k}, \tau)}{\partial \tau}+\mathcal{H}(\tau) \theta(\mathbf{k}, \tau)+\frac{3}{2} \mathcal{H}^{2}(\tau) \delta_{a}(\mathbf{k}, \tau)-\frac{k^{4}}{4 m_{a}^{2} a^{2}} \delta_{a}(\mathbf{k}, \tau)=0
$$

$k_{J}=\sqrt[4]{6} \sqrt{m_{a} a \mathcal{H}} \approx 1.6 a \sqrt{m_{a} H}$

Axion Jeans scale

$m>10^{-24} \mathrm{eV}$ indistinguishable from standard CDM

Hlozek, Grin, Marsch, Ferreira 1410.2896

Nonlinear perturbations

$$
\begin{aligned}
& \frac{\partial \delta_{a}(\mathbf{k}, \tau)}{\partial \tau}+\theta(\mathbf{k}, \tau)+\int d^{3} \mathbf{p} d^{3} \mathbf{q} \delta_{D}(\mathbf{k}-\mathbf{p}-\mathbf{q}) \alpha(\mathbf{q}, \mathbf{p}) \theta(\mathbf{q}, \tau) \delta_{a}(\mathbf{p}, \tau) \\
& \begin{array}{r}
\frac{\partial \theta(\mathbf{k}, \tau)}{\partial \tau}+\mathcal{H}(\tau) \theta(\mathbf{k}, \tau)+\frac{3}{2} \Omega_{m}(\tau) \mathcal{H}^{2}(\tau) \delta_{a}(\mathbf{k}, \tau)-\frac{\mathbf{k}^{4}}{4 m_{a}^{2} a^{2}} \delta_{a}(\mathbf{k}, \tau) \\
+\int d^{3} \mathbf{p} d^{3} \mathbf{q} \delta_{D}(\mathbf{k}-\mathbf{p}-\mathbf{q}) \beta(\mathbf{q}, \mathbf{p}) \theta(\mathbf{p}, \tau) \theta(\mathbf{q}, \tau) \\
\quad+\int d^{3} \mathbf{p} d^{3} \mathbf{q} \delta_{D}(\mathbf{k}-\mathbf{p}-\mathbf{q}) \frac{\mathbf{k}^{2}\left(\mathbf{k}^{2}+\mathbf{q}^{2}+\mathbf{p}^{2}\right)}{16 m_{a}^{2} a^{2}} \delta_{a}(\mathbf{q}, \tau) \delta_{a}(\mathbf{p}, \tau)
\end{array}
\end{aligned}
$$

From expanding Q to 2 nd order
$\sim \mathrm{k} \wedge 4$: UV catastrophe?
$\alpha(\mathbf{q}, \mathbf{p})=\frac{(\mathbf{p}+\mathbf{q}) \cdot \mathbf{q}}{\mathbf{q}^{2}} \quad \beta(\mathbf{q}, \mathbf{p})=\frac{(\mathbf{q}+\mathbf{p})^{2} \mathbf{q} \cdot \mathbf{p}}{\mathbf{q}^{2} \mathbf{p}^{2}}$

Linear PT cutoff

TRG results

$\mathrm{m} \sim 10^{-23} \mathrm{eV}$, no effect in linear th., but percent effects by TRG

Summary

* IR is important and is robust
* Intermediate scales treatable by (improved) SPT
* The UV is important but mildly cosmology dependent
* TRG can combine the three, is fast and flexible

