
Paris 25/5/2016

The TRG and coarse-grained PT’s

Massimo Pietroni - INFN, Padova



Outline

✤ Mode coupling or, where SPT 
fails

✤ The TRG: IR, intermediate, and 
UV effects

✤ Scalar field (axion/fuzzy) DM 



Mode coupling-Response 
functions
The nonlinear PS is a functional of the initial one 
(in a given cosmology and assuming no PNG):

SPT is an expansion around  P 0(q) = 0

Response function (Cosmology independence of the

UV)
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Abstract. The Response function

1. Definition and exact expression for the Response Function

Assuming gaussian initial conditions and the growing mode relation between the initial

density and velocity divergence, the nonlinear PS at time ⌘ is a functional of the linear

PS, given at some initial time ⌘in, P
0
(q; ⌘in), that is, Pab[P

0
](k; ⌘; ⌘in). In the following,

to simplify the notation, we will omit the ⌘in dependence when redundant.

Standard Perturbation Theory (PT) is a functional expansion around P 0
= 0
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(1) {PTexp}
where we have also used Pab[P

0
= 0](k; ⌘) = 0. The relation to the standard PT loop

expansion is given by noticing that the kernels of the expansion (1) are given by
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where P
(n�1)
ab is the PS evaluated at (n � 1)-loop order in PT. For instance, the linear

kernel is given by

�Pab[P
0
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�P 0
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P 0=0

= �D(k�q)gac(⌘�⌘in) uc gbd(⌘�⌘in) ud = �D(k�q)uaub ,(3) {link}

which, inserted in (1), gives the linear PS, P 0
ab(k; ⌘) = P 0

(k) uaub.

Notice the momentum delta function in (3). The first nontrivial mode-coupling

emerges at second order in P 0
, that is, at 1-loop. The explicit expression for the second

order kernel can be recovered by looking at the standard 1-loop expression, see for

instance [1], and then taking a double functional derivative according to (2).

It is well known that the PT expansion becomes problematic already for mildly

nonlinear scales at low redshifts, as higher order terms are not suppressed with respect

to lower order ones.

n=1  linear order (= “0-loop”)
n=2 “1-loop”
…a, · · · , d = 1

a, · · · , d = 2

density
velocity div.



Mode coupling-Response 
functions
Let’s instead expand around a reference PS: P 0(q) = P̄ 0(q)

Response function 2

In the following, we will consider a di↵erent expansion, analogous to (1), but

centered around a non-vanishing linear PS,

¯P 0
(q), namely,
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with �P 0
(q) ⌘ P 0

(q) � ¯P 0
(q) the deviation from the reference PS. In this expansion,

already the linear kernel,
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contains PT contributions at all orders, that is, arbitrarily high powers in

¯P 0
, and is

therefore a fully nonlinear object. Indeed, using (1) and (2) we easily check that we can

formally write an expansion for the LRF in terms of the PT kernels
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In (5) we have used spatial isotropy.

The knowledge of the linear response function (5) can be used to obtain the

nonlinear PS for a cosmology with a linear PS not too di↵erent from the reference one,

once the nonlinear PS for the latter has been computed, e.g., by N-body simulations.

Besides this practical use, the linear response function is also relevant for a more

fundamental issue, namely, it quantifies, at a fully nonlinear level, the coupling between

di↵erent modes. More precisely, it encodes how much a (small) modification of the

initial condition at a scale q impacts on the nonlinear PS at later times at a scale k.

In ref. [2] the LRF was measured in N-body simulations, and compared to the PT

results. While the IR behaviour (q/k ⌧ 1) is well reproduced by lowest order PT, they

found strong deviations for the UV modes (q/k � 1). In particular, while PT predicts

a non vanishing, or even growing LRF at large q (for fixed k), N-body simulations find

quite an opposite behaviour, with the LRF going to zero, thus showing evidence for a

decoupling between UV and intermediate scales.

In the following we will study the LRF beyond PT, first by deriving an exact

expression for it in terms of connected and 1PI functions, and then discussing proper

approximations in the IR and in the UV limits.

We start from the definition of the nonlinear PS

(2⇡)3�D(k+ k

0
)Pab(k; ⌘) ⌘ h'a(k; ⌘)'b(k

0
; ⌘)i , (7)

where brackets denote, as usual, averaging over the initial conditions at time ⌘in.
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Linear response function:

Non-perturbative (gets contributions from all SPT orders)

Key object for more efficient interpolators ?



IR and UV screening
3

be observed here is that a large contribution comes from
small wave modes (q < k) suggesting that the growth
of structure is dominated by mode flows from large to
small scales. Not surprisingly, the formation of structure
is more effectively amplified when it is part of a larger
structure than when it contains small scale features.

FIG. 2: Kernel function predicted by SPT (un-binned) up to
one- (thin solid) and two-loop (thick solid) order computed
at k = 0.2hMpc−1 at z = 1. Dashed (dotted) lines show
each of the one- (two-)loop contributions with the legend (ij)
showing the perturbative order of the calculation. We show a
negative sign in the legend when the contribution is negative.
Note that we ignore terms proportional to the Dirac delta
function at k = q, which is meaningful only when binning is
considered.

Such findings are fully in line with expectations from
PT calculations. We show the analytical calculation in
Fig. 2 up to the two-loop level (ignoring at this stage bin-
ning effects). We present the contribution from Pij(k) ∝
⟨δ(i)δ(j)⟩, where δ(i) is the ith-order term in the PT ex-
pansion. The terms in the same loop order cancel at the
IR domain (q < k) due to the extended galilean invari-
ance of the motion equations as shown and analyzed in
e.g., [15–19]. On the other hand, the UV domain is en-
tirely dominated by P13(k) and P15(k) at one and two
loops, respectively. Such terms can be alternatively de-
scribed as the correction to the density propagator. They
have been shown to dominate the behavior of the UV do-
main at any fixed order in SPT.
We then rescale the kernel at various redshifts as

T (k, q) = [K(k, q) −K lin(k, q)]/[qP lin(k)], where K lin is
the trivial linear contribution, and plot them in Fig. 3.
They are compared with the one-loop PT calculation
(solid), which is now time-independent. The simulation
data indeed shows little time evolution at q ! k in strik-
ing agreement with the PT predictions, reproducing the

FIG. 3: Rescaled kernel function, T (k, q) ≡ [K(k, q) −
Klin(k, q)]/[qP lin(k)]. SPT up to the one- and two-loop or-
der are shown by lines, whereas the symbols are measured
from the simulations (see legend for detail). The final wave-
mode bin is fixed to the one centered at k = 0.161 hMpc−1

(see the vertical arrow). Binning is taken into account to the
analytical calculations consistently to the simulations.

expected q dependence and amplitude [29] obtained from
the one-loop calculation and the change of sign one ex-
pects between the IR and the UV domain. The small
but non-negligible z-dependence at k ∼ q is further ac-
counted for by the two-loop calculation (see the figure
legend for line types). Note that at the final wave mode
plotted here (i.e., k = 0.161 hMpc−1), the two-loop SPT
prediction for the nonlinear power spectrum agrees with
simulations within 1% at z " 1 and the agreement gets
worse at lower redshift reaching to ∼ 5% at z = 0 (see
e.g., [5]).

At q " 0.3 hMpc−1 however, the measured kernel func-
tion is observed to be damped compared to perturbation
theory predictions at one or two-loop order. As can be
seen on Fig. 3, the one-loop SPT (solid line) predicts the
kernel function to reach a constant [30]; at the two-loop
order, it is expected to grow in amplitude with time. The
numerical measurements show on the other hand that the
scaled kernel function is strongly damped with decreasing
redshift. It is such that the couplings between scales take
place effectively between modes of similar wavelengths.
This effect is particularly important at late time. At red-
shift zero, the departure between two-loop predictions
and numerical results is striking. Furthermore analysis
of the kernel structure at three and higher loop order (see
e.g., [4]) suggests that SPT calculations, taken at any fi-
nite order, predict an even larger amplitude of the kernel
function in the high q region. It strongly suggests that
this anomaly is genuinely non-perturbative.
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We present detailed simulation measurement of the nonlinear response of the power spectrum
to small variations in the linear counterpart in the context of cosmological large-scale structure
formation. While the mode-coupling structure can be explained to a large extent with the standard
perturbation theory, we show that the coupling of the short-wave modes are however significantly
damped away making them contributing only weakly to the growth of long-wave modes. This is the
first time such an effect is measured. It is of crucial importance for the use of large-scale cosmological
data as probes of fundamental cosmological or physical parameters.

Wide field galaxy surveys are widely considered for un-
veiling the detailed geometrical properties or energy con-
tent of the universe [1]. Large-scale projects, such as the
EUCLID mission [26], are planned in the coming decade,
aiming at the determination of these properties with an
unprecedented accuracy. Such measurements rely to a
large extent on the use of the statistical properties of the
large-scale cosmic structures up to scales entering the
weakly non-linear regime, where the sole linear theory
cannot be used. Such a scientific program could then
only be achieved if the properties of the large-scale cos-
mological structure can be safely predicted either from
numerical simulations or from analytical investigations
for any given cosmological model. In particular it is im-
portant that such observables are shielded from the de-
tails of small scale astrophysics and gas physics at galac-
tic or sub-galactic scales.

One way to reformulate this question is to quantify
how small-scale structures can impact the growth on
large scales as soon as modes are entering the nonlin-
ear regime. Perturbation theory (PT) of the structure
formation is a powerful framework to precisely predict
the nonlinear gravitational dynamics of the cosmic fluid
from the first principle, at least when gravity only is at
play (see [2] for a review). The importance of such meth-
ods has been heightened after the detection of the baryon
acoustic oscillations (BAOs) in the clustering of galaxies
at late times (e.g., [3]), making precise predictions of the
nonlinear matter power spectrum crucially important.

PT calculations show precisely that mode couplings be-
tween different scales are unavoidable. This makes these
calculations in general difficult to develop in a controlled
manner. We propose here to quantify such couplings

with the use of a two-variable kernel function [27], de-
fined as the linear response at wave mode k with respect
to an initial perturbation of the linear power spectrum at
wave mode q. In the context of PT calculations, Ref. [4]
showed progressive broadening of the kernel function as
increasing the PT order, and speculated that a regular-
ization scheme in the UV domain is required to give a re-
alistic estimate of the high-order PT contributions. The
recent paper by [5] also pointed out the unsuccessful con-
vergence of the PT series at late times and proposed a
simple ansatz based on the Padé approximation to sup-
press the strong UV sensitivity seen in the standard PT
(SPT).
If the broadness of the kernel at late times suggested

from PT is true, physics at very small scale can influ-
ence significantly the matter distribution on large scales,
where the acoustic feature is prominent. It also poses
a question to the reliability of simulations, with which
we can follow the evolution of Fourier modes only in a
finite dynamic range. We here present direct measure-
ment of the kernel structure from cosmological N -body
simulations. We show that this allows a direct test of
regularization schemes employed in analytical models.
Definition and methodology.— Here we wish to intro-

duce a well-defined kernel function and investigate it at
fully nonlinear level. We consider the nonlinear power
spectrum as a functional of the linear counterpart, i.e.,
P nl = P nl[P lin], and define the kernel function as its
functional derivative:

K(k, q; z) = q
δP nl(k; z)

δP lin(q; z)
. (1)

We omit the explicit dependence on z from the arguments

Sensitivity of the nonlinear PS at scale k
on a change of the initial PS at scale q: 

Nishimichi, Bernardeau, Taruya 1411.2970

k = 0.161 h Mpc�1

PT overpredicts the effect of UV scales 
on intermediate ones

IR: “Galilean invariance”
K(k, q; z) ⇠ q3

Peloso, MP 1302.0223

… Little, Weinberg, Park, 1991



The non-perturbative LRF

Response function 3
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Figure 1. Diagrammatical representation of the linear response function Kab(k, q; ⌘),

eq. (11). {lrfgraph}

In [3] a path integral expression for such averages was derived, which for the PS

reads
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The initial conditions could be generalised from the gaussian case represented in (8),

by adding terms cubic, quartic, etc., in �(⌘in), with coe�cients given by the initial

bispectrum, trispectrum, and so on. The general expression for the LRF below would

not change in this case.

By taking the functional derivative of (8) with respect to the initial PS we get

(2⇡)3�D(k+ k

0
)

�Pab(k; ⌘)

�P 0
(q)

= �1

2

1

(2⇡)3
h'a(k; ⌘)�c(�q; ⌘in)�d(q; ⌘in)'b(k

0
; ⌘)iucud ,(10) {dp}

which, inserted in (5), gives

Kab(k, q; ⌘) = q �D(k � q)Gac(k; ⌘, ⌘in)uc Gbd(k; ⌘, ⌘in)ud

� 1

2

q3

(2⇡)3

Z

d⌦
q

h'a(k; ⌘)�c(�q; ⌘in)�d(q; ⌘in)'b(�k; ⌘)i0c ucud ,(11) {lrffull}

where the first line represents the disconnected contribution to the four-point function in

(10), and h· · ·i0c indicates the connected contribution divided by (2⇡)3�D(0), the overall

momentum delta function. Eq. (11) is represented diagrammatically in Fig. 1.

[link between this object and the trispectrum. covariance matrix?].

[ Meaning of the first line....]
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momentum delta function. Eq. (11) is represented diagrammatically in Fig. 1.

[link between this object and the trispectrum. covariance matrix?].

[ Meaning of the first line....]

GNL

methods from Matarrese, MP, ‘07
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UV screening

The effect of virialized structures on larger scales is screened
(Peebles ’80, Baumann et al  1004.2488, Blas et al 1408.2995). 

However, the departure from the PT predictions starts at small q’s:
is it only a virialization effect?
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Figure 1. Diagrammatical representation of the linear response function Kab(k, q; ⌘),

eq. (11). {lrfgraph}
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[link between this object and the trispectrum. covariance matrix?].

[ Meaning of the first line....]

e�
q2�2

v
2 damped propagators! 

(compare SPT: linear propagator g=O(1))

memory of initial substructures is largely lost



UV lessons

✤ SPT fails when loop momenta become higher than the nonlinear 
scale (q ≿ 0.4 h/Mpc)

✤ The real response to modifications in the UV regime is mild

✤ Most of the cosmology dependence is on intermediate scales



The nonlinear PS

PNL
ab (k, z) = Gac(k, z)Gbd(k, z)P

lin
cd (k, z) + PMC

ab (k, z)

IR, intermediate and UV physicsMostly IR physics
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1. Introduction

blablalba

2. Cose da fare

(i) Improve (
interpolated-sigma-PMC
??) come dal lavoro con Anselmi

(ii) Confrontare con TRG standard

(iii) Funzione di correlazione

3. Exact equations for PP and for PMC without vorticity
sec:exact-eqs

We start from the evolution equations for the filtered dark matter density contrast

(a = 1), and filtered velocity divergence (a = 2)
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This expression is derived in
app:CGPT-summary
Appendix A (eq. (

eqs2
A.9), where all the terms are properly

defined. In particular, we stress that the source terms h
a

has contributions from both

the filtering procedure and the microscopic velocity dispersion � (where “microscopic”

refers to the unfiltered fields). As remarked in the Appendix, this equation is exact up

to contributions proportional to the vorticity of the filtered dark matter velocity, which

can be taken into account perturbatively, starting at two loops, and we disregard in what

follows. We stress, however, that we do not assume that the vorticity of fine-grained

velocity vanishes, as it is included in the source h
a

. Moreover, to simplify the notation,

we will omit the bars over all the filtered quantities, when it does not cause confusion.

The power spectrum of the filtered fields is defined as
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From eq. (
eqs3
1) we obtain the TRG equation for the equal time filtered power spectrum
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with the bispectrum defined as

B
abc

(k, q, p; ⌘, ⌘0, ⌘00) = h'
a

(k, ⌘)'
b

(q, ⌘0)'
c

(p, ⌘00)i0. (5)

Eq. (
TRGPS
4) can be coupled with an evolution equation for the nonlinear bispectrum, as in

Pietroni08
[1], which, in turn, involves the trispectrum, and so on. The full system of equations

must then be truncated at some level and the di↵erent levels of truncation correspond
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Virtues

Time and scale-dependent growth

Treats the decaying mode(s) correctly

Good for multi-species (CDM+neutrinos, B+CDM, DM+Halo, 
modified GR…), and for PNG 

“Galilean” invariant (equal time correlators)

Can be fast (see later)
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Flowing with time: a new approach to non-linear cosmological perturbations

The two equations (5) can now be rewritten as

∂η ϕa(k, η) = −Ωab(k, η)ϕb(k, η) + eηγabc(k,−p,−q)ϕb(p, η) ϕc(q, η), (9)

where

Ω(k, η) =

(
1 −1

−3
2Ωm(η)(1 + B(k, η)) 2 + H′

H + A(k, η)

)
. (10)

Repeated indices are summed over, and integration over momenta q and p is understood.
Notice that the whole effect of changing the cosmology from EdS is contained in the
matrix Ωab, the vertices being universal.

The η-evolution of the correlation functions can be derived by iterating the application
of equation (9), as follows:

∂η ⟨ϕaϕb⟩ = −Ωac⟨ϕcϕb⟩ − Ωbc⟨ϕaϕc⟩
+ eηγacd⟨ϕcϕdϕb⟩ + eηγbcd⟨ϕaϕcϕd⟩,

∂η ⟨ϕaϕbϕc⟩ = −Ωad⟨ϕdϕbϕc⟩ − Ωbd⟨ϕaϕdϕc⟩ − Ωcd⟨ϕaϕbϕd⟩ + eηγade⟨ϕdϕeϕbϕc⟩
+ eηγbde⟨ϕaϕdϕeϕc⟩ + eηγcde⟨ϕaϕbϕdϕe⟩,

∂η ⟨ϕaϕbϕcϕd⟩ = · · ·
· · · . (11)

In order to have more compact equations, we have omitted the momentum and η-
dependence of the correlation functions. All the fields are evaluated at the same η-value.
Next we express the two-, three- and four-point correlators as

⟨ϕa(k, η)ϕb(q, η)⟩ ≡ δD(k + q)Pab(k, η),

⟨ϕa(k, η)ϕb(q, η)ϕc(p, η)⟩ ≡ δD(k + q + p)Babc(k,q,p; η),

⟨ϕa(k, η)ϕb(q, η)ϕc(p, η)ϕd(r, η)⟩
≡ [δD(k + q) δD(p + r)Pab(k, η)Pcd(p, η)

+ δD(k + p) δD(q + r)Pac(k, η)Pbd(q, η)

+ δD(k + r) δD(q + p)Pad(k, η)Pbc(q, η)

+ δD(k + p + q + r) Qabcd(k,q,p, r, η)] , (12)

where Pab(k, η) is the PS, Babc(k,q,p; η) the BS, and Qabcd(k,q,p, r, η), the connected
part of the four-point function, is the trispectrum.

In this paper, we will make the approximation Qabcd = 0. It should be emphasized
that this choice, although allowing us to split the four-point functions in terms of two-
point ones as in the Wick theorem, by no means amounts to considering the fields ϕa to be
Gaussian, since the BS is fully taken into account. In section 3, we will show explicitly, by
using diagrammatic methods, which class of non-linear interactions are taken into account
in this approximation.

The first two equations in (11) form now a closed system, given by

∂η Pab(k, η) = −Ωac(k, η)Pcb(k, η) − Ωbc(k, η)Pac(k, η)

+ eη

∫
d3q [γacd(k,−q,q − k) Bbcd(k,−q,q − k; η)

+ Bacd(k,−q,q − k; η) γbcd(k,−q,q − k)],
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The Full Bispectrum
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+ 2 cyclic permutations 

+ 2 cyclic permutations + 

+ 

Babc =

Figure B1. The structure of the exact bispectrum in terms of exact propagators
and vertices. The grey, red, and blue bubble on the first, second, and third diagram
represent the full 1PI vertices ��'', ���', and ����, respectively. The half-solid and
half-dashed line represents the full propagator G, with the field ' (�) at the solid
(dashed) end of the line. The solid line with a box represents the full power spectrum
of '.fBispectrum

The mixed bispectrum
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that appears in this expression is given by the diagrams in Fig.
MixBispectrum
B3.

Following (
TRGG
B.18), we join the two lines ending in a ' field by a tree vertex. We

then obtain the ⌃ function (see Figure
Sigma&Phi
B2) connected to the remaining � field by a full

propagator. Therefore
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“1PI” vertices

nonlinear PS and
 propagators



Closing the loops
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!ab= 2 + 

"ab= +2 + 

Figure B2. The structure of the exact ⌃ab and �ab functions, with the bubbles and
solid lines as in the previous figure. The vertex without bubble represents the tree
level vertex �. The external lines are amputated.Sigma&Phi

+ + B''�
abc =

a

b

c

a

b

c

a

b

c

Figure B3. The structure of the exact mixed bispectrum, defined in Eq.(
MixB
B.19) in

terms of exact propagators and vertices.MixBispectrum

and, inserting this relation in (
TRGG
B.18) we obtain (

evGh
10).

Appendix C. Numerical details
sec:numdetails

In this appendix we present some details of the numerical computations performed in

the main text.

We start from the TRG integration done to obtain the blue curve in Figure
fig:PP
1. As

discussed in Section
sec:PP
4, this curve is the solution of equation (

evPSP
15), with the approximation

(
interpolated-sigma
22). We can equivalently perform the same approximation in the corresponding

equation for the propagator, and write
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The blue line of Figure
fig:PP
1 is obtained by inserting the solution to this equation into eq.

(
PP11-G1cc
16).
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3. Exact equations for PP and for PMC without vorticity
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This expression is derived in
app:CGPT-summary
Appendix A (eq. (

eqs2
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defined. In particular, we stress that the source terms h
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has contributions from both

the filtering procedure and the microscopic velocity dispersion � (where “microscopic”

refers to the unfiltered fields). As remarked in the Appendix, this equation is exact up

to contributions proportional to the vorticity of the filtered dark matter velocity, which

can be taken into account perturbatively, starting at two loops, and we disregard in what

follows. We stress, however, that we do not assume that the vorticity of fine-grained

velocity vanishes, as it is included in the source h
a

. Moreover, to simplify the notation,

we will omit the bars over all the filtered quantities, when it does not cause confusion.
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From eq. (
eqs3
1) we obtain the TRG equation for the equal time filtered power spectrum
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with the bispectrum defined as
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Eq. (
TRGPS
4) can be coupled with an evolution equation for the nonlinear bispectrum, as in

Pietroni08
[1], which, in turn, involves the trispectrum, and so on. The full system of equations

must then be truncated at some level and the di↵erent levels of truncation correspond



Simplest Truncation

Computing the bispectrum by 
a truncated TRG equation (trispectrum=0) gives JC

A
P

10(2008)036

Flowing with time: a new approach to non-linear cosmological perturbations

Figure 1. The O(γ0) contributions to the power spectrum and the bispectrum.

Figure 2. The O(γ) contributions to the bispectrum and the O(γ2) (first line)
and O(γ) (second line) ones to the power spectrum.

yielding

P L
ab(k, η) = gac(k, η, 0) gbd(k, η, 0)Pcd(k, η = 0),

BL
abc(k,−q,q − k; η) = gad(k, η, 0)gbe(−q, η, 0)gcf(q − k, η, 0)Bdef(k,−q,q − k; η = 0),

(16)

where we explicitly see, besides the initial PS, the initial BS evaluated at η = 0. Notice
that, due to the e−η factor in front of equation (7), the linear PS is independent of η, in
the growing mode.

In the language of Feynman diagrams introduced in [14], the linear order solution
can be represented as in figure 1, where the lines correspond to propagators, the empty
box to the primordial PS and the empty triangle to the primordial BS. The next order
(O(γ)) correction for the BS is obtained by inserting P L

ab in place of Pab in the RHS of
the second of equations (14). The result is represented at the bottom of figure 2, where
the vertex represents the interaction γabc. Inserting the BS at this order (that is, the
sum of the O(γ0) and O(γ) contributions of figures 1 and 2, respectively) in the first of
equations (14), we get the O(γ2) and O(γ) contributions to the PS, represented in the

Journal of Cosmology and Astroparticle Physics 10 (2008) 036 (stacks.iop.org/JCAP/2008/i=10/a=036) 8

linear vertices 
and propagators

nonlinear contributions 
to the PS at all SPT orders

PNG differs from SPT 
starting from 2-loops
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where

Θ(k, η) =

⎛

⎝

1 −1

−
3

2
Ωeff

cb (k, η) 2 +
d logH

dη

⎞

⎠ , (2.10)

and the only non-vanishing elements of the vertex function γabc(k,p,q) are

γ112(k, p, q) =
1

2
δD(k + p + q)

(p + q) · q

q2
,

γ222(k, p, q) = δD(k + p + q)
(p + q)2 p · q

2 p2q2
, (2.11)

and γ121(k, p, q) = γ112(k, q, p).

In eq. (2.9), repeated indices are summed over, and integration over momenta q and p

is understood. Notice that all the information on the neutrino mass, both at the background
and at the linear perturbation level, is contained in Θ21, the other entries of Θ and the
vertices being universal.

At this point we should stress a crucial difference between the present approach and
the ones of refs. [30, 31, 34, 35]. Namely, in those papers, the equations are derived in the
Einstein-deSitter (EdS) case (Ωm = 1) and then extended to different cosmologies, such as
ΛCDM, by reinterpreting η as the logarithm of the linear growth factor, while keeping the
equations unchanged. In particular, the Θ - matrix is approximated by that of the EdS
model. It was discussed in [30] and numerically checked in [40] that in cosmologies with a
constant equation of state for the dark energy, this procedure gives at most a O(1%) error at
z = 0 for k ! 0.3h/Mpc, rapidly decreasing at higher redshift and larger scales. The physical
reason for this accuracy lies in the fact that this procedure takes fully into account the growing
mode of the non-EdS cosmology, while it mistreats the decreasing one. The latter start to
play a role only at high k’s or for low redshifts, where non-linearities become important.

However, when massive neutrinos contribute to the dark matter, the linear growth
factor is k-dependent, and the redefinition of η is ill-defined. This singles out the present
approach, the TRG, as particularly suited to this case. Indeed, in this approach, we keep
the same definition, eq. (2.8) for any cosmological model, and take fully into account the
k-dependence of the linear growth function via the Ωeff

cb (k, η) term in eq. (2.10).

The evolution in η of the correlation functions of the ϕa fields can be derived by iterating
the application of eq. (2.9). The result is an infinite tower of coupled integro-differential
equations. Following ref. [40], we will truncate the system by neglecting the trispectrum.
The evolution equations for the PS, ⟨ϕa(k, η)ϕb(q, η)⟩ ≡ δD(k + q)Pab(k , η), and for the

– 5 –

JCAP06(2009)017

The TRG is a method to sum perturbative corrections to all orders. The starting point
are the continuity and Euler equations satisfied by the density contrast and peculiar velocity
of a non-relativistic fluid (i.e. CDM or baryons in the present case),

∂ δcb

∂ τ
+ ∇ · [(1 + δcb)v] = 0 ,

∂ v

∂ τ
+ Hv + (v ·∇)v = −∇φ , (2.3)

where τ is the conformal time and we have assumed δb = δc = δcb. The gravitational potential
φ is determined by the total mass fluctuation, via the Poisson equation

∇2φ =
3

2
H2 Ωm δm , (2.4)

where H = d log a/dτ . Dropping the δcbv term in the continuity equation and the (v ·∇)v
one in the Euler equation, the solutions to the system above reproduce linear perturbation
theory on the subhorizon scales we are interested in.

In order to close the system (2.3), we go to Fourier space, use eq. (2.1), and approximate
the r.h.s. of the Poisson equation as follows

3

2
H2 Ωm(τ) δm(k, τ) ≃

3

2
H2 Ωeff

cb (k, τ) δcb(k, τ) , (2.5)

where

Ωeff
cb (k, τ) ≡ Ωm (τ) (1 − fν)

(

1 +
fνδL

ν (k, τ)

(1 − fν)δL
cb(k, τ)

)

. (2.6)

δL
ν,cb indicate the density perturbations evolved according to linear theory. Notice that, due

to the different space dependence of δL
ν and δcb

ν in the massive neutrino case, Ωeff
cb — unlike

Ωm — is space-dependent. Another approximation is to recursively use the full TRG-evolved
δcb fluctuation in eq. (2.6). However, we numerically checked that performing one iteration
(i.e. , using the output non-linear δcb as an input in eq. (2.6) instead of δL

cb) does not affect the
results by more than 0.1%. This way of including massive neutrinos is conceptually similar to
the grid method used in N-body simulations of ref. [26]. where, instead of simulating massive
neutrinos as particles with individual velocities, they are embedded as a local neutrino density
on a grid which is evolved in time using linear theory.

Next, we write eqs. (2.3), (2.4) in a compact form [30, 40]. First, we introduce the
doublet ϕa (a = 1, 2), given by

(

ϕ1(k, η)
ϕ2(k, η)

)

≡ e−η

(

δcb(k, η)
−θ(k, η)/H

)

, (2.7)

where θ = ik ·v, and the time variable has been replaced by the logarithm of the scale factor,

η = log
a

ain
, (2.8)

ain being the scale factor at a conveniently remote epoch, such that all the relevant scales
are well inside the linear regime.

Then, we get

∂η ϕa(k, η) = −Θab(k, η)ϕb(k, η) + eηγabc(k, −p, −q)ϕb(p, η)ϕc(q, η), (2.9)

– 4 –
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Figure 3.Matter power spectra Pk
11 divided by a linear spectrum without baryonic wiggles P

k
L,nw (Eisenstein & Hu 1998) in the mildly non-linear regime. The

linear spetrum is depicted as solid (black) line. A spectrum from N-body simulations (Carlson et al. 2009) serves as reference (yellow). The dashed (blue) line
is time-RG theory and the dashed (green) line is time-RG theory with trispectrum included. Left panel: z = 1, right panel: z = 0.

originate from the second order kernels F(2)a in eqn. (34), while the last diagramm is due to the third order perturbation kernel F(3)a in eqn. (35).
Also here, one can see that all perturbative corrections we included are of third order in the linear power spectrum. While the perturbation
theory trispectrum is calculated at tree-level, both the evolution equations - for the bispectrum and for the power spectrum - introduce one
momentum integration. Therefore, all these correction diagrams are two loop diagrams.

We want to emphazise at this point that the inclusion of the perturbation theory trispectrum does not lead to a simple perturbative
correction only. At each time step the perturbative trispectrum corrects the evolution of bispectrum and power spectrum. Therefore, from
that moment on these corrections will be involved in the non-perturbative method of time renormalisation. In this work we only discuss the
trispectrum corrections to this method, since the quality and performance of the original time renormalisation technique has been thoroughly
discussed already (Pietroni 2008).

5 NUMERICAL RESULTS

We solved the system from equation (38) starting from redshift z = 100 well within the linear regime with linear initial power spectra (see
eqn. (21)) and vanishing bispectrum. We evolved the system to redshift z = 1 and z = 0 with and without trispectrum included and compared
the power spectra with results from numerical simulations of the sameΛCDM cosmology (Carlson et al. 2009). Due to numerical complexity
only power spectra up to k = 1 hMpc−1 were included in the trispectrum integrals ∆I kacd,be f from eqn. (40). However, in the integrals I

k
acd,be f

from eqn. (20) modes up to k = 10 hMpc−1 were taken into account, were the results saturate to percent accuracy.
The results are shown in Fig. 3, in which also the linearly evolved power spectrum is depicted. All spectra were divided by a linear

power spectrum Pk
L,nw without wiggles from baryonic acoustic oscillations (Eisenstein & Hu 1998, eqn. 29). For z = 1 the results with the

trispectrum included are in excellent agreement with numerical simulations up to k ≃ 0.17 hMpc−1. For 0.17 hMpc−1 ! k ! 0.25 hMpc−1

the method performs still better than without trispectrum included. Beyond this regime the perturbative description of the trispectrum breaks
down and the results are in strong disagreement with simulations.

It is not surprising that below a certain scale the method performs better without the perturbative trispectrum included. For larger k in
the integrals ∆Ak

acd,be f in eqn. (40) also trispectra at smaller scales contribute to the evolution. Since in perturbation theory loop corrections
become more and more important at smaller scales, the tree-level trispectrum description breaks down above a specific wave number. For this
reason, beyond k ≃ 0.25 hMpc−1 time renormalisation without trispectrum will lead to better results in comparisons to numerical simulations.

At z = 0 trispectrum corrections overcompensate the too strong growth in the pure TRG approach on scales below k ≈ 0.15 hMpc−1 and
lead to too little growth. In this regime our results agree with the numerical simulations within 2.5%. The better agreement for z = 1 on these
scales may simply be due to the breakdown of the tree-level perturbative descrition of the trispectrum at later times. Beyond k ≈ 0.15 hMpc−1

the inclusion of the trispectrum leads to a better agreement with simulations than pure TRG, while both methods show too strong growth
further inside the non-linear regime.

The results for pure TRG may differ from the results of Pietroni (2008), since only 12 instead of 14 independent integrals I kacd,be f were
included in the original method. However, in later applications all 14 independent were taken into account.

c⃝ 2012 RAS, MNRAS 000, 1–10

Juergens, Bartelmann, 2012

differs from SPT 
starting from 3-loops

but still misses a crucial effect
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Notice that the “propagator” part of the nonlinear PS, satisfies
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and therefore the “mode-coupling”

part satisfies (4) itself,
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but with initial condition P
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(k; ⌘
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, ⌘

in

) = 0.

This suggests that we can treat the propagator and mode coupling parts separately.

For instance, following Appendix A of [1] one can see that at large momentum the last

line of eq. (5) factorizes as
Z

⌘in
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⌃
ac

(k; ⌘, s)P P

cb

(k; s, ⌘) + ⌃
bd

(k; ⌘, s)P P

ac

(k; ⌘, s)
⇤

' �2 k2

�

2

v

e⌘(e⌘ � e⌘in)P P

ab

(k; ⌘, ⌘) , (7) {appZeld}

so that eq. (5) can be exactly integrated to give
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that is, the propragator part of the PS in Zel’dovich approximation, considered in [2].

More accurate approximations of eq. (5) can be considered, again along the lines of [1].

For instance, using the 1-loop expression for ⌃
ab

, the resulting P

P

ab

interpolates between

the 1-loop one at small k (that is the P
13

contribution in standard PT language) and the

Zel’dovich one, eq. (8), at large k. In any case, the important point is that the propagator

part can be treated sepearately from the mode-coupling one. In the following we focus

on the time evolution equation for the latter.

2. Relation between eq. (4) and the TRG equations

First, we discuss the relation between eq. (4) and the TRG equations introduced in [3].

The TRG equation for the PS in presence of a source h

a

is
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Exact equation

Peloso, MP, Viel, Villaescusa-Navarro, in preparation

Anselmi, Matarrese, MP, 1011.4477
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and, inserting this relation in (
TRGG
B.18) we obtain (

evGh
10).

Appendix C. Numerical details
sec:numdetails

In this appendix we present some details of the numerical computations performed in

the main text.

We start from the TRG integration done to obtain the blue curve in Figure
fig:PP
1. As

discussed in Section
sec:PP
4, this curve is the solution of equation (

evPSP
15), with the approximation

(
interpolated-sigma
22). We can equivalently perform the same approximation in the corresponding

equation for the propagator, and write
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The blue line of Figure
fig:PP
1 is obtained by inserting the solution to this equation into eq.

(
PP11-G1cc
16).
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The blue line of Figure
fig:PP
1 is obtained by inserting the solution to this equation into eq.

(
PP11-G1cc
16).

PP
ab(k, ⌘) = Gac(k; ⌘, ⌘in)Gbd(k; ⌘, ⌘in)ubudP

0(k)

(exact factorization,
exponential damping

as in Crocce-Scoccimarro)
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Figure 9: Propagator part of the PS
11

over the linear propagator, for various
approximations. This quantity is filter-independent.
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The orange curve in Figure 10 is obtained by solving the 1-loop TRG,
with no filter. Namely, we use
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Large k limit: Zel’dovich 
Small k limit: 1-loop
Interpolation built in the equation!
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Large scale flows and BAO’s

Seo et al, 0910.5005, Padmanabhan et al 1202.0090, Tassev, Zaldarriaga 1203.6066, … 

A 2% Distance to z = 0.35 : Methods and Data 3

Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h�1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.

steps of this algorithm below and discuss details specific to
our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function ⇠(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ⌘ d lnD/d ln a ⇠⌦0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and ⌦M is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are su�ciently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field  within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by � . Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional �f( · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by � . Note that we do not correct these for
redshift-space distortions. Denote these points by S.

c� 0000 RAS, MNRAS 000, 000–000

reconstruction

110 Mpc/h

O(10 Mpc) 
displacements
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Figure 2. First row: Matter CF in real space, for massless neutrinos, and at redshift
z = 0. The right panel is a zoom of the left panel centered at the BAO peak. The
data points are from our N-body simulations; the red dashed, green solid, and blue
solid lines are, respectively, ⇠lin, ⇠(1), and ⇠(2), defined in eq. (17), multiplied by R2.
The black solid (dashed) line at small R2⇠ values in the left panel is the di↵erence (5)
between the CF from the FrankenEmu [18] N-body based emulator and ⇠(1) (and ⇠(2)),
also rescaled by R2. The black solid line in the right panel is the FrankenEmu CF,
times R2. Second row: same as in the first row, but at redshift z = 1.
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Figure 3. Ratio between the matter real space CF at two di↵erent redshifts, for
massless neutrinos. The top, middle, and bottom curves in the figure are ratios of CF
at z = 0.5, z = 1, z = 2, respectively, divided by the corresponding CF at z = 0. The
data are ratios between our N-body simulations; the red dashed, green solid, and blue
solid lines are ratios between, respectively, ⇠lin, ⇠(1), and ⇠(2), defined in eq. (17). The
black solid lines are ratios between CF obtained from the FrankenEmu emulator.
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simplest approximation of the nonlinear CF, eq. (4), and the Zel’dovich approximation;

in Appendix C we derive the PS in redshift space including the e↵ect of bulk flows.

Finally, in Appendix D, we discuss the dependence of our N-body simulations on mass

and force resolution.

1. Nonlinear evolution of the BAO peak

In full generality, the nonlinear matter PS at redshift z has the following structure

[19, 20]:

P (k, z) = G2(k, z)P lin(k, zin) + PMC(k, z) , (1)

where P lin(k, z) = D2(z)P lin(k, zin) is the linear PS, and zin is some initial redshift

chosen well after decoupling and such that all the relevant scales are still in the linear

regime (it can coincide with the redshift at which we start the N-body simulations,

which in this paper is zin = 99, see Section 2). The nonlinear e↵ects are completely

encoded in the two functions appearing at the RHS: the propagator G(k, z), representing

the cross-correlator between the nonlinear density field at redshift z and the initial one

at zin [19, 21], and the “mode-coupling” term PMC(k, z).

We stress that the above expression is completely general, the only assumption

behind it being that the nonlinear density field, �(k, z), is some “functional” of the

initial density and velocity fields, see Appendix A for details. Then, one can compute

these quantities in any consistent approximation scheme, such as Eulerian or Lagrangian

perturbation theory (PT).

The BAO wiggles of P lin(k, z) are in general smoothed out in PMC(k, z) as its

computation involves momentum integrals in which two or more linear PS evaluated

at di↵erent scales are convolved. Therefore, as we will demonstrate below, the BAO

information is basically confined to the G2(k; z)P lin(k) term which, after Fourier

transform, accounts for approximately all the BAO peak in the CF.

The propagator has been studied thoroughly in the recent literature [21, 22, 23].

In Zel’dovich approximation it is given by (see Appendix B)

GZeld(k, z) = e�
k2�2

v(z)
2 , (2)

where �2

v(z) is the 1-dimensional velocity dispersion evaluated in linear theory, namely,

�2

v(z) =
1

3

Z
d3q

(2⇡)3
P lin(q, z)

q2
. (3)

In the following, we will mostly consider the CF obtained in Zel’dovich approximation

by neglecting the mode-coupling part (see eq. (B.7)). Namely, we will study the Fourier

transform of

P (1)(k, z) = e�k2�2
v(z)P lin(k, z) , (4)

and we will show that it gives a very good approximation to the nonlinear matter CF

in the BAO peak region, and in particular to ratios of CF’s for di↵erent redshifts, or

PP
11(k, z) = e�

k2�2
v(z)

2 P lin(k; z)
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If we consider two linear PS di↵ering by �P lin(q), and, correspondingly, two �2

v

di↵ering by

��2

v =
1

3

Z
d3q

(2⇡)3
�P lin(q)

q2
, (14)

the CF changes by

�⇠(R) =
1

2⇡2R

Z
dq q sin(qR) �P lin(q) e�q2�2

v � ⇠
2

(R) d�2

v

R2

=
1

2⇡2

Z
dq q2 �P lin(q)

✓
sin(qR)

qR
e�q2�2

v � 1

3

⇠
2

(R)

q2R2

◆
. (15)

For instance, if the two linear PS di↵er only in their normalizations, �P lin(q) =

P lin(q)�A/A, the corresponding height of the BAO peak changes by

�A⇠(R)

⇠(R)
=

�A

A

✓
1� �2

v ⇠2(R)

R2⇠(R)

◆
, (16)

where the second term inside parentheses gives the –scale-dependent– nonlinear e↵ect.

A special case is that of considering two di↵erent (and nearby) redshifts, in which case

�A/A = �D(z)2/D(z)2. In this case, at z = 0, the nonlinear term gives typically

a 15 � 25% negative correction at the peak position and a 20% positive one at the

minimum left to the BAO peak, with respect to the linear result.

Eq. (15) can also be used to estimate the peak change between two slightly di↵erent

cosmologies. For instance, let us consider the change of the BAO peak at z = 0 between

two cosmologies with di↵erent neutrino masses (the two cosmologies only di↵er from each

other by the neutrino mass, and by the cold dark matter abundance, in such a way that

the total matter component, ⌦
m

, is the same). For
P

m⌫ = 0.15 eV, eq. (15) predicts

a decrease of the peak height of ⇠ �0.6% with respect to the massless neutrino case.

At the higher masses that we have considered the peak heights is instead greater than

in the massless case. Specifically, eq. (15) gives an increase of ⇠ 1.2% for
P

m⌫ = 0.3

eV, and of ⇠ 5.7% in the case of
P

m⌫ = 0.6 eV. This behavior is confirmed by the

results presented in Figure 6. In particular, we see that nonlinear e↵ects invert the trend

with respect to linear theory. Indeed, in linear theory the BAO peak height decreases

with increasing neutrino masses (see the red-dashed curves at R ⇠ 100Mpc/h in the

figure). The bulk flows, on the other hand, are less e↵ective for higher neutrino masses

(as the corresponding �2

v is lower) in degrading the linear BAO peak, and therefore

they increase the ratio of the height in the massive vs. massless case with respect to

the linear prediction. For
P

m⌫ = 0.15 eV, the decrease of the peak predicted by the

linear theory dominates over the increase due to the bulk flows. The opposite is true

for
P

m⌫ = 0.3, 0.6 eV.

In Section 3 we compute the CF in real and redshift space, starting from the power

spectra introduced above. Specifically, in real space we compute and show

⇠lin (R) =
1

2⇡2R

Z 1

0

dq q sin (qR)P lin (q) ,
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P
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In Section 3 we compute the CF in real and redshift space, starting from the power

spectra introduced above. Specifically, in real space we compute and show

⇠lin (R) =
1

2⇡2R

Z 1

0

dq q sin (qR)P lin (q) ,
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while

⌃
⇤,1(k, z) ⌘ k2

504 (2⇡)2

Z 1

⇤

dq P lin(q, z)


12k2

q2

� 158 + 100
q2

k2

� 42
q4

k4

+
3k3

q3

⇣ q2

k2

� 1
⌘
3

⇣
2 + 7

q2

k2

⌘
log

����
k + q

k � q

����

�
,

(8)

and �2

v,⇤(z) is given by eq. (3) in which a UV cuto↵ on the momentum q at the scale ⇤

has been imposed. Using the fact that for soft modes k2�2

v,⇤(z) ' �2⌃
0,⇤(k, z), we see

that expanding the exponential in (6) one recovers the 1-loop expression for the PS in

standard PT,

P (2)(k, z) = P lin(k, z) + P
13

(k, z) + P
22

(k, z) +O(2 loop) . (9)

The extension to higher loop orders, possibly including also a better treatment of

the short modes along the e↵ective approaches discussed in [35, 24, 25], is possible,

although computationally more and more demanding.

Our main point in this paper is to show that the physics of the BAO peak

degradation is well understood, so that by measuring not only the peak position, but

also the peak shape, one can recover cosmological information. To discuss this point

we will focus on the simplest approximation, eq. (4), keeping in mind that it can be

systematically improved.

1.1. Parametric dependence of the BAO peak

We will concentrate on the BAO peak in the CF. We start by discussing pure matter in

real space, for which the CF is given by

⇠(R) =
1

2⇡2R

Z 1

0

dq q sin(qR)P (q) , (10)

where we have omitted the time (or redshift) dependence. We will also use the

“moments” ⇠
1,2(R), defined as

⇠n(R) ⌘ 1

2⇡2R

Z 1

0

dq q (qR)n sin(qR)P (q) . (11)

In the BAO peak, R = R̄, defined by

⇠0(R̄) =
d⇠(R̄)

dR̄
= 0 , (12)

we have 1

2⇡2

R1
0

dq q2 cos
�
qR̄

�
P (q) = ⇠

�
R̄
�
, and so ⇠00(R̄) = �⇠

2

(R̄)/R̄2.

If we take the simplest expression (4) for P (q), then the dependence of the CF ⇠(R)

on �2

v is given by

@ log ⇠(R)

@ log �2

v

= � �2

v

R2

⇠
2

(R)

⇠(R)
. (13)
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Figure 2. First row: Matter CF in real space, for massless neutrinos, and at redshift
z = 0. The right panel is a zoom of the left panel centered at the BAO peak. The
data points are from our N-body simulations; the red dashed, green solid, and blue
solid lines are, respectively, ⇠lin, ⇠(1), and ⇠(2), defined in eq. (17), multiplied by R2.
The black solid (dashed) line at small R2⇠ values in the left panel is the di↵erence (5)
between the CF from the FrankenEmu [18] N-body based emulator and ⇠(1) (and ⇠(2)),
also rescaled by R2. The black solid line in the right panel is the FrankenEmu CF,
times R2. Second row: same as in the first row, but at redshift z = 1.
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Figure 3. Ratio between the matter real space CF at two di↵erent redshifts, for
massless neutrinos. The top, middle, and bottom curves in the figure are ratios of CF
at z = 0.5, z = 1, z = 2, respectively, divided by the corresponding CF at z = 0. The
data are ratios between our N-body simulations; the red dashed, green solid, and blue
solid lines are ratios between, respectively, ⇠lin, ⇠(1), and ⇠(2), defined in eq. (17). The
black solid lines are ratios between CF obtained from the FrankenEmu emulator.
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Figure 4. Matter CFs in real space. Analogous of Figures 2 (z = 0) and 3 (ratios
between CFs at di↵erent z), but now for massive neutrinos. The figures in the first
row are for

P
m⌫ = 0.15 eV, while those in the second row are for m⌫ = 0.3 eV.

not improve significantly the ratios between CF’s.

Indeed, while the ⇠(1) CF does not perfectly reproduce the N-body CF, it tracks

extremely well how the CF changes with redshift. We see this from Figure 3, where we

show ratios between matter CF (of the same cosmology) computed at di↵erent redshift.

The ratios obtained from ⇠(1) are in excellent agreement with the ratios obtained from

our N-body data, as well as with the FrankenEmu. We also see that, as we just

mentioned, the inclusion of the P
22

term does not provide a significant improvement

on these ratios.

Identical conclusions are obtained in the comparison between ⇠(1) and our N-body

data in the case of massive neutrinos. Notice that FrankenEmu does not provide data

for these cosmologies. We show this in Figure 4, where we present the CF at z = 0, and

the ratio between CFs at di↵erent redshift, in the case of
P

m⌫ = 0.15 eV (first row)

and 0.3 eV (second row). In these cases, we computed the velocity dispersion �2

v using

the linear PS for total matter in eq. (3), that is for �m = ⌦
c

�
c

+ ⌦
b

�
b

+ ⌦⌫�⌫ , as it is

the source of the Poisson equation.

It is natural to ask whether an equivalent agreement takes place also in redshift

space. This is confirmed by Figure 5, where we show the comparison between the

angular-averaged redshift space CF (21) and the one obtained from the N-body data.

The linear correlations functions in real and redshift space are related to each other by

the Kaiser relation (21). Not surprisingly, this also overpredicts the BAO peak. On the

contrary, the CF ⇠̄(1)s shows an equal agreement with the N-body simulations as its real
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Figure 6. Ratio between the z = 0 matter redshift space CFs of two cosmologies
with di↵erent neutrinos masses. The first, second, and third row show the CF forP

m⌫ = 0.15, 0.3, 0.6 eV, respectively, divided by the corresponding CF for massless
neutrinos. The left column shows the ratios in real space. The data are ratios between
our N-body simulations; the red dashed, green solid, and blue solid lines are ratios
between, respectively, ⇠lin, ⇠(1), and ⇠(2), defined in eq. (17). The right column shows
the ratios in redshift space. The red dashed, and green solid lines are, respectively,
⇠̄Kaiser
s and ⇠̄(1)s , defined in eq. (21).

simulations, as described in the previous section. The comparison is less probing than in

the matter case, due to the increased sample variance of the latter (there are fewer halos

than dark matter particles in the simulations). This is particularly true at increasing

redshifts, and for this reason we only show halo data at z = 0, 0.5. The two solid

lines shown in the figure are obtained with either a constant density bias, b (k) = b
10

(green line) or a bias of the type b (k) = b
10

+ b
01

k2 (blue line), times the exponential

suppression due to the bulk flows, see eq. (24). The bias coe�cients are obtained by

PP
11(k, z) = e�

k2�2
v(z)

2 P lin(k; z)

increasing neutrino 
masses, 

Plin decreases, but also 
velocity dispersion 

decreases.
X

m⌫ = 0.15 eV

X
m⌫ = 0.3 eV

↓ 0.6% 

↑ 1.2% 
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Figure 5. Matter CFs in redshift space at z = 0 (first column) and ratios between
CFs at di↵erent redshift (second column). The figures in the first, second, third row
are for

P
m⌫ = 0, 0.15, and 0.3 eV, respectively. The data are from our N-body

simulations; the red dashed, and green solid lines are, respectively, for ⇠̄Kaiser
s and for

⇠̄(1)s , defined in eq. (21).

space counterpart ⇠(1).

The real space CF ⇠(1) and its redshift space counterpart ⇠̄(1)s are an optimal tool to

study the dependence of the CF on the neutrino masses. This can be seen from Figure

6, where we show ratios between the CF of a cosmology with massive neutrinos divided

by a cosmology with massless neutrinos (the two cosmologies only di↵er from each other

by the neutrino mass, and by the cold dark matter abundance, in such a way that ⌦
m

is

the same for them). Also in this case, the ratios obtained from ⇠(1) (left column plots)

and ⇠̄(1)s (right column plots) are in excellent agreement with the ratios obtained from

the N-body data.

Actual measurements of the BAO peak involve biased objects. In Figure 7 we study

the agreement between the halo CF ⇠(1)hh (24) and the halo CF obtained from our N-body
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Figure 7. Halo CFs. The figures in the first, second, and third row are forP
m⌫ = 0, 0.15, and 0.3 eV, respectively. The left panels show the real space CF

at z = 0; the middle panels show the ratio between z = 0.5 and z = 0 CF in real space;
the right panels show the same ratio in redshift space. The data are from our N-body
simulations. The green (respectively, blue) curves are obtained from the bias function
b10 (respectively, b10 + b01 k2).

fitting the N-body correlation function (23) at large scales. For the plots on the left

column we see that already using the constant bias allows to reproduce the height of

the BAO peak. Allowing for the b
01

k2 term improves the agreement with the N-body

CF at values of R smaller than the peak. The plots in the second and third column of

the figure show ratios of CF at di↵erent redshifts (the second column shows ratios in

real space, while the third column shows ratios in redshift space). We see that both the

ratios obtained from a constant or from a linear bias are in agreement with the ratios

from the N-body data (in fact, not appreciable scale dependence can be observed from

the N-body ratios due to their error bars).

Finally, in Figure 8 we show ratios between the halo CF at z = 0 of a cosmology

with massive neutrinos and of a cosmology with massless neutrinos (keeping the same

⌦m for all cosmologies, as we did for Figure 6). We see that the ratios obtained using

the b
10

+ b
01

k2 bias are in better agreement with the central value of the N-body data

than those obtained from a constant bias, although also the latter appear to be within

the 1� � error bars of the N-body data.

Redshift space Halos
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Abstract. The Time Renormalization Group

1. Time-evolution equations without source terms

We start from the exact expressions for the nonlinear propagator and PS, that is

G

ab

(k; ⌘, ⌘0) =
⇥

g

�1 �⌃

⇤�1

ab

(k; ⌘, ⌘0)

= g
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(⌘ � ⌘

0) +

Z

ds ds

0
g

ac

(⌘ � s)⌃
cd

(k; s, s0)g
db

(s0 � ⌘

0) + · · ·

(1) {fullG}

and

P
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(k; ⌘, ⌘0) = G

ac

(k; ⌘, ⌘
in

)G
bd

(k; ⌘0, ⌘
in

)P 0(k)u
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+
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(k; s, s0)

⌘ P

P
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(k; ⌘, ⌘0) + P
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(k; ⌘, ⌘0) . (2) {fullP}

The propagator satisfies the exact evolution equation

@

⌘
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The PS on the other hand, satisfies (for ⌘ > ⌘

in

)
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Putting everything together: TRG with 
IR resummation and UV sources
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linear growth

IR (propagator) effects

Intermediate scales: (resummed) SPT

UV sources (from Nbody)



IR resummation for PMC

Sigma included, Phi @ 1-loop, no UV sources

Improving TRG with the inclusion of IR and UV physics 7
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Figure 2. Mode coupling part of the PS11 over the linear propagator. LEFT PANEL:
N-body results are compared with the SPT 1-loop result, and with our TRG result.
The results are shown at redshift z = 1, and without filtering (L = 0 in eq. (

Wt
A.3), or,

equivalently, W̃ = 1). RIGHT PANEL: The N-body result is compared against TRG
results obtained for di↵erent filter scales L (given in units of h�1 Mpc).fig:PMC

result obtained in the previous section (namely, the result shown with a green line in

Figure
fig:PP
1), which we have seen agrees extremely well with our Nbody simulations (we

use the TRG result rather than out Nbody results to avoid the sample variance present

in the latter). This result is compared against the 1-loop standard SPT result (which

includes only the one loop P
22

term, since the P
13

term contributes to P P ) and against

the solution of our TRG system. The comparison shows that the inclusion of the velocity

dispersion considerably improves over SPT also for the mode coupling term.

The power spectra shown in the left panel of Figure
fig:PMC
2 are for the unfiltered fields at

redshift z = 1. The accuracy of the TRG result worsens at decreasing redshift. Filtering

away the UV modes, as outlined in
filter
A.2, significantly improves the accuracy. We show

this in the right panel of the figure, where the Nbody PMC at redshift z = 0 is compared

with the TRG result obtained for various values of the filter scale L in eq. (
Wt
A.3). More

precisely, we show the ratio between the filtered PMC (obtained from the TRG system

(
systemPMC-TRG
C.8) for the given value of L specified in the figure) and the linear power spectrum,

also filtered by W̃ 2 (k L).

Discuss what L we choose.

6. Total power spectrum and correlation function
sec:Ptot

7. Conclusions
conclusions

.....

No hidden parameters. As fast as a 1-loop SPT computation



�ab(k; s, s0)

large k 

leading contributions to 
Phi:

1 “hard” loop momentum, n-1 “soft” 
ones

Can be obtained in eRPT: 
tree-level=UV limit

Anselmi, MP,
1205.2235Beyond 1-loop



BAO scales

1% in the BAO region at all redshifts! 



large k

z=1: 
1% up to 
k=0.8 h/Mpc

z=0.5: 
2% up to 
k=0.8 h/Mpc



One parameter
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Figure 19. The results in the large k region for k̄ = 0.15, 0.20, 0.25, 0.30 h Mpc�1, (orange, red,
cyan, purple lines, respectively).
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Figure 18. The results in the BAO region for k̄ = 0.15, 0.20, 0.25, 0.30 h Mpc�1, (orange, red,
cyan, purple lines, respectively).

where k̄ = 0.2 h/Mpc represents a reasonable value above which the large scale expression
can start to be applicable. Alternatively, k̄ can also be taken as a parameter to be
marginalized in fits to real data. In figures 18 and 19 we show results obtained by changing
the filter value from k̄ = 0.15 to 0.30 h Mpc�1.

The initial conditions must be given at a very large redshift zin = O(100), where the
PS can be approximated with the linear one:

P
ab

(k; ⌘in) = u
a

u
b

P 0(k) , (D.8)

and the equations can then be integrated town to the required final redshift, corresponding
to ⌘

f

= log D(z
f

)/D(zin).
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As we have discussed in the text, the third line of eq. (6.17) is well approximated by using
the small scale expression for �̃

ab

given in eq. (6.15), and the small scale analytic expression
for the propagator, GL

ab

, instead of the solution of eq. (3.2) with eq. (3.5), namely, Ḡ
ab

. The
time integration can then be done analytically, to get.
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with y ⌘ e⌘ k �
v

. The function B(y2) is a combination of generalized hypergeometric
functions,
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Eq. (D.3) gives the large y limit of the third line of eq. (6.17). In the very large k limit

�(1)
ab

(k; ⌘, ⌘) ! u
a

u
b

P 0(k)y2 and eq. (D.3) goes to eq. (6.19).
As we have discussed in the text, in the small momentum limit the second term,

�̃GB

ab

(k; ⌘) has to be switched o↵, because it contains 2-loop expressions valid at large k.
Therefore we will multiply it by a momentum cuto↵ function. In our numerical implementa-
tions, as discussed in the text, we have used the expression
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with resummations of the MC part
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Dealing with the UV

✤ General idea: take the UV physics from N-body simulations 
and use (resummed) PT only for the large and intermediate 
scales
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(“Wilsonian approach”)

Expansion in sources:
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1
2
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computed in PT 
with cutoff at 1/L

measured from 
simulations



Vlasov Equation

Liouville theorem+ neglect non-gravitational interactions:
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Vlasov  equation in the L_uv ➞ 0 limit!

� = h�miciLUV

f = hfmiciLUV

large scales

short scales

hgiLUV (x) ⌘ 1
VUV

Z
d3yW(y/LUV )g(x + y)


@

@⌧

+
p

i

am

@

@x

i

� amri

x

�(x, ⌧)
@

@p

i

�
f(x,p, ⌧) =

am


h @

@p

i

f

mic

ri

�

mic

i
LUV (x,p, ⌧)� @

@p

i

f(x,p, ⌧)ri

x

�(x, ⌧)
�
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Taking moments…
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Villaescusa-Navarro, Viel, 1407.1342

Measuring the sources in Nbody simulation



COSMOLOGY DEPENDENCE

Simulation Suite

L
box

= 512Mpc/h Nparticles = (512)3



Ratios of UV source correlators

hJ�ii

hJ�iREF
From N-body

Scale-independent!!



Rescale using PT information

Amplitude rescaling captured by PT!!



Putting everything together: TRG with 
IR resummation and UV sources
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Improved TRG
Peloso, MP, Viel, Villaescusa-Navarro, in preparation

linear growth

IR (propagator) effects

Intermediate scales: (resummed) SPT

UV sources (from Nbody)



Strategy

IR from Sigma (no parameter)

Intermediate scales from Phi in 1-loop SPT (up to loop momentum L)

UV from N-body sources (for loop momenta larger than L)



The UV impact
Improving TRG with the inclusion of IR and UV physics 8
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Figure 3. Total PS11 over the linear propagator, at z = 1 (left panel) and z = 0 (right
panel). The N-body result is compared against TRG results obtained for di↵erent filter
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Appendix A. Coarsed-grained perturbation theory
app:CGPT-summary

In this Appendix we briefly review the derivation of the system of equations of the

coarse grained perturbation theory (CGPT) for dark matter
Pietroni:2011iz,Manzotti:2014loa
[9, 3]. We refer the reader

L-dependence is a 2-loop effect: renormalisation scale dependence
Should improve at higher orders 
L fixed at once for all redshifts
Time consuming as a 1-loop!
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Linear Theory
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A search for ultra-light axions using precision cosmological data
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Ultra-light axions (ULAs) with masses in the range 10�33 eV  ma  10�20 eV are motivated
by string theory and might contribute to either the dark-matter or dark-energy densities of the
Universe. ULAs could suppress the growth of structure on small scales, or lead to an altered
integrated Sachs-Wolfe e↵ect on large-scale cosmic microwave-background (CMB) anisotropies. In
this work, cosmological observables over the full ULA mass range are computed, and then used
to search for evidence of ULAs using CMB data from the Wilkinson Microwave Anisotropy Probe
(WMAP), Planck satellite, Atacama Cosmology Telescope, and South Pole Telescope, as well as
galaxy clustering data from the WiggleZ galaxy-redshift survey. In the mass range 10�32 eV 
ma  10�25.5 eV, the axion relic-density ⌦a (relative to the total dark-matter relic density ⌦d)
must obey the constraints ⌦a/⌦d  0.05 and ⌦ah

2  0.006 at 95%-confidence. For ma ⇠> 10�24 eV,
ULAs are indistinguishable from standard cold dark matter on the length scales probed, and are
thus allowed by these data. For ma ⇠< 10�32 eV, ULAs are allowed to compose a significant fraction
of the dark energy.

PACS numbers: 14.80.Mz,90.70.Vc,95.35.+d,98.80.-k,98.80.Cq

I. INTRODUCTION

A multitude of data supports the existence of dark
matter (DM) [1–12]. The identity of the DM, however,
remains elusive. Axions [13–15] are a leading candidate
for this DM component of the Universe [16–22]. Origi-
nally proposed to solve the strong CP problem [13], they
are also generic in string theory [23, 24], leading to the
idea of an axiverse [25]. In the axiverse there are multiple
axions with masses spanning many orders of magnitude
and composing distinct DM components. For all axion
masses ma ⇠> 3H

0

⇠ 10�33eV, the condition ma > 3H
is first satisfied prior to the present day. When this hap-
pens, the axion begins to coherently oscillate with an
amplitude set by its initial misalignment, leading to ax-
ion homogeneous energy densities that redshift as a�3

(where a is the cosmic scale factor). If ma ⇠> 10�27 eV,
the axion energy-density dilutes just as non-relativistic
particles do after matter-radiation equality, making the
axion a plausible DM-candidate.

The fact that axions can be so light places them, like
neutrinos, in a unique and powerful position in cosmol-
ogy. For as we shall show, unlike all other candidates
for DM, axions lead to observational e↵ects that are di-

rectly tied to their fundamental properties, namely the
mass and field displacement. Signatures in the cosmic
microwave background (CMB) and large-scale structure
(LSS) can be used to pin down axion abundances to high

⇤ dmarsh@perimeterinstitute.ca

FIG. 1. Marginalized 2 and 3� contours show limits to the
ultra-light axion (ULA) mass fraction ⌦a/⌦d as a function
of ULA mass ma. The vertical lines denote our 3 sampling
regions, discussed below. The mass fraction in the middle
region is constrained to be ⌦a/⌦d ⇠< 0.05 at 95% confidence.
Red regions show CMB-only constraints, while grey regions
include large-scale structure data.

precision as a function of the mass; these constraints can
be used to place stringent limits on the mass of the ax-
ion as a candidate for DM. Furthermore, the nature of
inhomogeneities in the axion distribution yield, as with
primordial gravitational waves, a direct window on the
very early universe and, in particular, the energy scale of
inflation. This state of a↵airs echoes the remarkable re-
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Nonlinear perturbations
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From expanding Q to 2nd order
~ k^4: UV catastrophe?
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Linear PT cutoff
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TRG results

0.0 0.2 0.4 0.6 0.8

0.96

0.98

1.00

1.02

1.04

LCDM
m=10^(-23) eV
m=5 10^(-24) eV
m=10^(-24) eV

The UV cutoff acts differently on P13 and P22 

m~10-23 eV, no effect in linear th., but percent effects by TRG



Summary

✤ IR is important and is robust

✤ Intermediate scales treatable by 
(improved) SPT

✤ The UV is important but mildly 
cosmology dependent

✤ TRG can combine the three, is 
fast and flexible


