

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES Département de physique théorique

Including neutrinos in standard perturbation theory

Hélène DUPUY (Geneva University), in collaboration with Francis BERNARDEAU

May, 26th 2016

Nonlinear evolution of the large-scale structure of the universe: theory meets expectations

$N_{\rm eff}$ and $M_{\rm v}$ are everywhere

• During the radiation-dominated era:

$$\rho_r = \rho_\gamma + \rho_\nu = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_\gamma.$$

Photons AND neutrinos fix the expansion rate at early times.
 N_{eff} has an impact on the primordial abundances of light elements.

 Neutrinos with a mass lying between 10⁻³ eV and 1 eV are relativistic at matter-radiation equality and non-relativistic today.

 M_{v} has an impact either on z_{eq} or on $\Omega_{m,0}$ (depending on the parameters one decides to keep fixed).

In principle, the CMB spectrum is sensitive to M_v (background effects + effects on secondary anisotropies).

But the CMB alone is not sufficient to constrain sub-eV neutrino masses.

Massive neutrinos and the linear matter power spectrum

Figure 6.5 Steplike suppression of the matter power spectrum due to neutrino mass. The power spectrum of a Λ CDM model with two massless and one massive species has been divided by that of a massless model, for several values of m_{ν} between 0.05 eV and 0.50 eV, spaced by 0.05 eV. All spectra have the same primordial power spectrum and the same parameters ($\Omega_{\rm M}$, $\omega_{\rm M}$, $\omega_{\rm B}$).

Massive neutrinos and the non-linear matter power spectrum

Numerical simulations showing the effect of massive neutrinos on the non-linear matter power spectrum (*m* = 0.15 eV) Authors: S. Bird *et al.* (arXiv: 1109.4416)

Why should neutrino perturbations be treated non linearly?

Approximate vs full two-fluid scheme

k [h/Mpc] Different approximate schemes are compared to a one in which nonlinearities of neutrinos are taken into account. The curves represent ratios of non-linear contributions to the matter power spectrum. Authors: D. Blas *et al.* (arXiv: 1408.2995)

A multi-flow approach to study noncold species beyond the linear regime

• In each flow,
$$P_i(\eta, \mathbf{x}; \vec{\tau}) = \frac{\int \mathrm{d}^3 p_i \ f_{\vec{\tau}}(\eta, x^i, p_i) p_i}{\int \mathrm{d}^3 p_i \ f_{\vec{\tau}}(\eta, x^i, p_i)}.$$

arbitrary function

• More generally,
$$\mathcal{F}[P_i(\eta, \mathbf{x})] n_c(\eta, \mathbf{x}) = \int \mathrm{d}^3 p_i \ f(\eta, x^i, p_i) \overset{\bullet}{\mathcal{F}}[p_i]$$
.

 The physical quantities of interest can be expressed in terms of our fields:

$$\underbrace{\int \mathrm{d}^3 p_i \, f^{\mathrm{tot}}(\eta, x^i, p_i) \, \mathcal{F}(p_i)}_{\mathrm{Boltzmann approach}} = \underbrace{\int \mathrm{d}^3 \tau_i \, n_c(\eta, \mathbf{x}; \tau_i) \, \mathcal{F}(P_i(\eta, \mathbf{x}; \tau_i))}_{\mathrm{our approach}}.$$

• In each flow, the equation of motion of the density field is

$$\frac{\partial}{\partial \eta} n_c + \frac{\partial}{\partial x^i} \left(\frac{P^i}{P^0} n_c \right) = 0,$$

where $P^i = g^{ij}P_j$ and P^0 is defined so that $P^{\mu}P_{\mu} = -m^2$.

 $(l_{\rm max} = 6, N_{\mu} = 12, N_{\rm q} = N_{\tau} = 40, k = k_{\rm eq} = 0.01h/{\rm Mpc}, m = 0.3 \text{ eV}).$

USEFUL PROPERTIES ON SUBHORIZON SCALES

In a perturbed Friedmann-Lemaître metric, the equations read

$$\frac{\partial}{\partial \eta} n_c + \frac{\partial}{\partial x^i} \left(\frac{P^i}{P^0} n_c \right) = 0,$$
$$\frac{\partial P_i}{\partial \eta} + \frac{P^j}{P^0} \frac{\partial P_i}{\partial x^j} = a^2(\eta) \left[-P^0 \partial_i A + P^j \partial_i B_j + \frac{1}{2} \frac{P^j P^k}{P^0} \partial_i h_{jk} \right].$$

• In the **subhorizon** limit, they become

 τ_0

 au_0

$$\mathcal{D}_{\eta}n_{c} + \partial_{i}(V_{i}n_{c}) = 0,$$

$$\mathcal{D}_{\eta}P_{i} + V_{j}\partial_{j}P_{i} = \tau_{0}\partial_{i}A + \tau_{j}\partial_{i}B_{j} - \frac{1}{2}\frac{\tau_{j}\tau_{k}}{\tau_{0}}\partial_{i}h_{jk},$$
with $\tau_{0} = -\sqrt{m^{2}a^{2} + \tau_{i}^{2}}, \quad \mathcal{D}_{\eta} = \frac{\partial}{\partial\eta} - \frac{\tau_{i}}{\tau_{0}}\frac{\partial}{\partial x^{i}}$
and $V_{i} = -\frac{P_{i} - \tau_{i}}{\tau_{0}} + \frac{\tau_{i}}{\tau_{0}}\frac{\tau_{j}(P_{j} - \tau_{j})}{(\tau_{0})^{2}}.$ \leftarrow peculiar velocity

GENERALIZATION 1: NO CURL MODES IN THE MOMENTUM FIELD

On subhorizon scales the curl field, defined as

$$\Omega_i = \epsilon_{ijk} \partial_k P_j,$$

obeys the equation $\mathcal{D}_{\eta}\Omega_k + V_i\partial_i\Omega_k + \partial_iV_i\Omega_k - \partial_iV_k\Omega_i = 0.$

The curl field is only sourced by itself.

For adiabatic initial conditions, the **comoving momentum** field can be written as a gradient.

As the velocity field of cold dark matter, it is **entirely characterized by its divergence**.

GENERALIZATION 2: ALL MODE COUPLINGS ARE QUADRATIC

• By analogy with cold dark matter, we introduce

$$\theta_{\tau_i}(\eta, x^i) = -\frac{P_{i,i}(\eta, x^i; \tau_i)}{ma\mathcal{H}}, \quad \delta_{\tau_i}(\eta, x^i) = \frac{n_c(\eta, x^i; \tau_i)}{n_c^{(0)}(\tau_i)} - 1.$$

• In Fourier space, it gives

$$\left(a\partial_a - \mathbf{i}\frac{\mu k\tau}{\mathcal{H}\tau_0} \right) \delta_{\vec{\tau}}(\mathbf{k}) - \frac{ma}{\tau_0} \left(1 - \frac{\mu^2 \tau^2}{\tau_0^2} \right) \theta_{\vec{\tau}}(\mathbf{k}) = \frac{ma}{\tau_0} \int d^3 \mathbf{k}_1 d^3 \mathbf{k}_2 \alpha_R(\mathbf{k}_1, \mathbf{k}_2; \vec{\tau}) \delta_{\vec{\tau}}(\mathbf{k}_1) \theta_{\vec{\tau}}(\mathbf{k}_2),$$

$$\begin{pmatrix} 1 + a \frac{\partial_a \mathcal{H}}{\mathcal{H}} + a \partial_a - i \frac{\mu k \tau}{\mathcal{H} \tau_0} \end{pmatrix} \theta_{\vec{\tau}}(\mathbf{k}) + \frac{k^2}{m a \mathcal{H}^2} S_{\vec{\tau}}(\mathbf{k}) = \\ \frac{m a}{\tau_0} \int d^3 \mathbf{k}_1 d^3 \mathbf{k}_2 \beta_R(\mathbf{k}_1, \mathbf{k}_2; \vec{\tau}) \theta_{\vec{\tau}}(\mathbf{k}_1) \theta_{\vec{\tau}}(\mathbf{k}_2).$$

• Considering N flows, it is useful to introduce the 2N-uplet

$$\Psi_a(\mathbf{k}) = (\delta_{\tau_1}(\mathbf{k}), \theta_{\tau_1}(\mathbf{k}), \dots, \delta_{\tau_n}(\mathbf{k}), \theta_{\tau_n}(\mathbf{k}))^T.$$

• The resulting equations is

 $a\frac{\partial\Psi_a}{\partial a}(\mathbf{k},\eta) + \Omega_a^{\ b}(\mathbf{k},\eta) \Psi_b(\mathbf{k},\eta) = \gamma_a^{\ bc}(\mathbf{k}_1,\mathbf{k}_2,\eta) \Psi_b(\mathbf{k}_1,\eta) \Psi_c(\mathbf{k}_2,\eta).$

The relativistic equation of motion is **formally the same as** the equation describing cold dark matter.

This study is presented in arXiv: 1411.0428 (H. Dupuy and F. Bernardeau).

Time evolution of the velocity divergence for different values of τ , with $\mu = 0(0.45k_{\rm B}T_0 < \tau < 9k_{\rm B}T_0)$.

Solid lines: m = 0.05 eV. Dashed lines: m = 0.3 eV.

Prospects

- Solving the non-linear system of equations in the eikonal approximation (arXiv:1109.3400, F. Bernardeau et al.).
- Solving the non-linear system of equations in the general case. What is the most suitable technique? Can the timerenormalization group method (arXiv:0806.0971, M. Pietroni) be extended to the study of a collection of flows?
- Using our results to visualize the gravitational collapse of neutrinos for given initial distributions of matter. Can we learn something about the space distribution of voids?