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N ¢and M, are everywhere

e

* During the radiation-dominated era:
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- Photons AND neutrinos fix the expansion rate at early times.

- N ¢ has an impact on the primordial abundances of light
elements.

Pr = Py T Ppv =

* Neutrinos with a mass lying between 103 eV and 1 eV are relativistic
at matter-radiation equality and non-relativistic today.

- M, has an impact either on z,, or on Q ,(depending on the
parameters one decides to keep fixed).

- In principle, the CMB spectrum is sensitive to M, (background
effects + effects on secondary anisotropies).

But the CMB alone is not sufficient to constrain sub-eV neutrino
masses.




Massive neutrinos and the linear
matter power spectrum
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Figure 6.5 Steplike suppression of the matter power spectrum due to neutrino
mass. The power spectrum of a ACDM model with two massless and one massive
species has been divided by that of a massless model, for several values of m,
between 0.05 eV and 0.50 eV, spaced by 0.05 eV. All spectra have the same
primordial power spectrum and the same parameters (2, WM, @B).




Massive neutrinos and the non-linear
matter power spectrum
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Numerical simulations showing the effect of massive neutrinos
on the non-linear matter power spectrum (m = 0.15 eV)

Authors: S. Bird et al. (arXiv: 1109.4416)




Why should neutrino perturbations be
treated non linearly?

Approximate vs full two—fluid scheme
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Different approximate schemes are compared to a one in which non-

linearities of neutrinos are taken into account. The curves represent
ratios of non-linear contributions to the matter power spectrum.

Authors: D. Blas et al. (arXiv: 1408.2995)




A multi-flow approach to study non-
cold species beyond the linear regime
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(label of the flow)

* Total distribution function: ftOt (n,%x,p) ZfT‘/n,x p).

* One density field per flow: n.(n,x;7) = /d?’pi f=(n,z", p;).
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* Ineach flow, P;(n,x;T) = ff dgp-ffE?nmxipp)-z)j .

arbitrary function

l

+ More generally, F [P,(n,x)] n.(n,x) = / &p; f(n,5',p:) Flpi].

* The physical quantities of interest can be expressed in terms of our
fields:

/dgpz' Fon, 2t pi) Fpi) = /dBTi ne(n,x; 1) F(Pi(n,x;7;)) -

VO TV
Boltzmann approach our approach




* In each flow, the equation of motion of the density field is
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where P* = g P; and PY is defined so that PP, = —m?.

* In each flow, THY = —PHJY.
energy-momentum tensor particle four-current

- Combined conservation laws impose

1
P9,P, = 2 PP 0igo|




(Imax =6, N, =12, Ny = N; =40,k = keq = 0.01h/Mpc,m = 0.3 eV).
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More details can be found in a [,

arXiv: 1311.5487 (H. Dupuy and F. Bernardeau).




USEFUL PROPERTIES ON SUBHORIZON SCALES

In a perturbed Friedmann-Lemaitre metric, the equations read
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In the subhorizon limit, they become

Dyne + 0;(Vine) =0 initial momentum of the flow
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GENERALIZATION 1: NO CURL MODES IN THE MOMENTUM FIELD

* On subhorizon scales the curl field, defined as

Q) = €ijk0k P,

obeys the equation D, ()i, 4 V;0;8, + 0; Vi, — 0; Vi), = 0.

- The curl field is only sourced by itself.

For adiabatic initial conditions, the comoving momentum
field can be written as a gradient.

As the velocity field of cold dark matter, it is entirely
characterized by its divergence.




GENERALIZATION 2: ALL MODE COUPLINGS ARE QUADRATIC

* By analogy with cold dark matter, we introduce
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* |In Fourier space, it gives

kT ma B pA7? B
(a8 17—[7'0) d7(k) - (1 2 ) 0-(k) =

[ dladan(ia, ke 7)) (k)
O H kT k?
( H Hm) brlke) + o7 (k) =
ma

/ 0%k, %k B (K1, Ko 7)07 (1 )05 (k).

T0




* Considering N flows, it is useful to introduce the 2N-uplet

Uo(k) = (6, (k), -, (k), ..., 0, (k),0-, (k)"

* The resulting equations is

o0 )
(k) + Q. (k,n) Up(k,n) =7, (k1, ko, 7)Up(ki, ) Uc(ka, ).
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- The relativistic equation of motion is formally the same as
the equation describing cold dark matter.

* This study is presented in arXiv: 1411.0428 (H. Dupuy and
F. Bernardeau).
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Time evolution of the velocity divergence for different values

of 7, withpu = O(O.45/€BT() T < 9kBTQ).

Solid lines: m = 0.05eV.
Dashed lines: m = 0.3¢eV.




Prospects

* Solving the non-linear system of equations in the eikonal
approximation (arXiv:1109.3400, F. Bernardeau et al.).

* Solving the non-linear system of equations in the general case.
What is the most suitable technique? Can the time-
renormalization group method (arXiv:0806.0971, M. Pietroni)
be extended to the study of a collection of flows?

* Using our results to visualize the gravitational collapse of
neutrinos for given initial distributions of matter. Can we learn
something about the space distribution of voids?




