

N-body Matter Power Spectrum and Covariance Benchmarks for Future Galaxy Survey Data Analyses

Pier Stefano Corasaniti

CNRS & Observatoire de Paris

From Past to Present

Galaxy Surveys

- 2dF: spectroscopic redshifts of ~200.000 galaxies in 1500 deg² at z < 0.3
- SDSS-I: spectroscopic redshifts of ~300.000 galaxies in ~4000 deg² at z < 0.7

- SDSS/BOSS: spectroscopic redshifts of ~1.000.000 galaxies from 8500 deg² in 0.2 < z < 0.7
- $\alpha(z=0.57) = 1.0144 \pm 0.0098$ (stat+sys)

Anderson et al. (2014)

In a not too far future

DES

Photometric redshifts of ~3 10^8 galaxies in 5000 deg² at z < 1.2 LSST

Photometric redshifts of $\sim 10^9$ galaxies full sky at z < 1.5 and beyond

Euclid

Spectroscopic redshifts of ~ 10^9 galaxies full sky at z < 1.5 and beyond

from Euclid red book

Are we ready?

Expectations

- Large Volumes & Wide Redshift Range
- High Galaxy Number Density
- Reach ~ few % Statistical Errors

Requirements

- Cosmological model predictions to few % accuracy
- Estimate Power Spectrum Covariance

Theoretical Challenges

- At % level non-negligible even at $k \sim 0.1$ and z = 1
- Non-linear mode correlations
- Deviations from Gaussian statistics

Example: Resolving the BAO Scale

Large Dynamical Range

- ~100 Mpc/h
- ~1-10 Mpc/h width •

N-body Requirements

- Large Volume (> 1 Gpc)³
- High Resolution ($\leq 10^{12} M_{sun}$)

Sample Variance Errors

$$\sigma(k) = \sqrt{\frac{2}{N_k}} \left[P(k) + \frac{1}{N_p} \right] \quad \text{with} \quad N_k = \frac{k^2 \Delta k}{2\pi^2} V \qquad \Delta k = \frac{2\pi}{L_{box}}$$

 L_{box}

Large Volume Runs

Millenium XXL

3.0 h⁻¹ Gpc 303 billion particles

Horizon Run

10.8 h⁻¹ Gpc 375 billion particles

DEUS FUR

21 h⁻¹ Gpc 550 billion particles

DEUS - Full Universe Runs

- L_{box} = 21 Gpc/h
- N_p = 8196³
- $\Delta x_{\text{coarse}} = 40 \text{ kpc/h}$
- $m_p = 10^{12} M_{sun}/h$
- RAMSES code
- Models: LCDM-W7, RPCDM-W7, WCDM-W7

DEUS FUR - 03/2012 www.deus-consortium.org/

Curie Thin (80000 cores)

- 1.2 Petabytes of data- 10 Mhours

Alimi et al. (2012), Proceedings of SC'12, arXiv: 1206.2838

BAO from DEUS-FUR LCDM-7

Statistical & Systematic Errors

- Mass Resolution
- Refinement

- Initial Conditions
- Time Integration

Simulation Suite

L _{box}	\mathbf{n}_{x}	$\mathbf{m}_{\mathrm{ref}}$	\mathbf{z}_i	C_{dt}
10500	4096	14	106	0.2
5250	2048	14	106	0.2
2625	1024	14	106	0.2
1312	512	14	106	0.2
5250	2048	8	106	0.2
5250	2048	25	106	0.2
5250	2048	14	106	0.08
5250	2048	14	106	0.5
5250	2048	14	272	0.2
5250	2048	14	170	0.2

L _{box}	\mathbf{n}_{x}	m_{ref}	\mathbf{z}_i	C_{dt}
5250	2048	14	66	0.2
5250	2048	14	41	0.2
2592	2048	8	56	0.5
2592	1024	8	56	0.5
648	1024	8	93	0.5
648	512	8	93	0.5
648	256	8	93	0.5
2625	1024	14	106^{*}	0.2
5250	2048	14	106**	0.2

Rasera, Corasaniti, Alimi et al. (2014)

Statistical Errors

Systematic Errors – Integration dt

 $L_{box} = 5250 \text{ Mpc/h N}_{p} = 2048^{3}$

Systematic Errors – Refinement

 $L_{box} = 5250 \text{ Mpc/h N}_{p} = 2048^{3}$

Systematic Errors – IC

 $L_{box} = 5250 \text{ Mpc/h N}_{p} = 2048^{3}$

Systematic Errors – Resolution

- 8% drop at k=0.3 for ~3 $10^{12} h^{-1} M_{sun}$ (Heitmann et al. 2010)
- Accumulated force resolution error during PM computation (linear regime)
- ~8 cells per particle, Zeldovich wave test (Knebe, Green & Binney 2001)

BAO Spectrum at 1%

Interval Range 0.03 < k < 0.3

Wiggle-free Spectrum

- Linear wiggle-free ? NL erase BAO at high-end interval
- Polynomial fit ?
- NL evolved wiggle-free initial spectrum Crocce & Scoccimarro (2008)

N-body evolved Hu & Eisensten wiggle-free Initial Conditions

$$P_{DEUS-FUR}^{BAO}(k) = P_{DEUS-FUR}^{corr}(k) - P_{smooth}(k)$$

BAO Spectrum Benchmark

RegPT – Taruya et al. (2012) Halofit – Smith et al. (2003,2014)

- Location of BAO extrema <1%
- Amplitude difference >1% at k>0.1 and z=1

Implications for Euclid Data Analysis

Power Spectrum Covariance

Non-Linear Contribution

$$\operatorname{cov}(k_1, k_2) = \frac{2}{N_{k_1}} P^2(k_1) \delta_{k_1 k_2} + \frac{1}{V} \int_{\Delta_{k_1} \Delta_{k_2}} \int_{\Delta_{k_1} \Delta_{k_2}} \frac{d^3 k_1}{V_{k_1}} \frac{d^3 k_2}{V_{k_2}} T(k_1, -k_1, k_2, -k_2)$$

- Non-linear regime sources non-Gaussianity (T ≠ 0)
- Fully analytical trispectrum is not viable (several models on the market still require simulation input)

Sampling N-body Ensemble

$$\operatorname{cov}(k_1, k_2) = \frac{1}{N_r - 1} \sum_{i=1}^{N_r} \left[\hat{P}_i(k_1) - \overline{P}(k_1) \right] \left[\hat{P}_i(k_2) - \overline{P}(k_2) \right] \qquad \overline{P}(k) = \frac{1}{N_r} \sum_{i=1}^{N_r} \hat{P}_i(k)$$

Previous Studies

Power Spectrum Statistics

- $N_r = 5000$ N-body PM simulations
- $L_{box} = 1 \text{ Gpc } h^{-1} \text{ \& } N_p = 256^3 \text{ (m}_p = 4.1 \times 10^{12} \text{ h}^{-1} \text{ M}_{\odot})$

• Not conclusive (still large statistical uncertainties)

DEUS-Parallel Universe Runs

 $N_r = 12288$ Simulations $N_p = 256^3 L_{box} = 648$ Mpc/h $m_p = 1.2 \times 10^{12} M_{sun}$

 $N_r = 512$ Simulations $N_p = 512^3 L_{box} = 1.3$ Gpc/h $m_p = 1.2 \times 10^{12} M_{sun}$

 $N_r = 96$ Simulations $N_p = 1024^3 L_{box} = 648$ Mpc/h $m_p = 1.8 \times 10^{10} M_{sun}$

large volume reference simulation from DEUS FUR Project (10500 h⁻¹Mpc)³ 4096³ particles **1 set of 512 mini-simulations** (1312.5 h⁻¹Mpc)³ 512³ particles **3 sets of 4096** micro-simulations (656.25 h⁻¹Mpc)³ 256³ particles

1 set of 64 hi-res simulations (656.25 h⁻¹Mpc)³ 1024³ particles

DEUS-PUR Covariance

Blot, Corasaniti, Alimi, Reverdy, Rasera (2015)

Diagonal Components

- Set A
- Deviations from linear prediction grow towards low redshifts
- The onset of the deviation moves towards lower k at lower redshifts

Numerical Systematics

Mass Resolution Errors

- Set A vs Set B
 - At intermediate scales
 lower resolution leads to
 lower covariance
- Discrepancy decrease
 with z and within statistical
 noise for z<0.5
- PM effect on trispectrum, alleviated by refinement
- Corrections

$$\hat{P}_A^{\text{corr}}(k) = \left[\hat{P}_A(k) - \bar{P}_A(k)\right] \frac{\sigma_{\hat{P}_B}(k)}{\sigma_{\hat{P}_A}(k)} + \bar{P}_B(k)$$

Correlation Matrix

1.0

 Non-negligible mode correlations on BAO scales

$$(k_1, k_2) = \frac{\operatorname{cov}(k_1, k_2)}{\sqrt{\operatorname{cov}(k_1, k_1) \operatorname{cov}(k_2, k_2)}}$$

)

Power Spectrum Distribution

Deviations from χ^2 statistics

 P(k) of Gaussian density field is χ²-distributed

Impact on cosmo params inference of 10% deviation from Gaussian likelihood at k>0.2?

Errors on Covariance Estimation

- Sample Covariance in Clustering Analyses
- Propagation of Sample Variance Errors on Covariance
- Gaussian density field covariance: Wishart Distribution

$$p(\hat{\mathcal{C}}|\mathcal{C},\nu,\mu) = \left(\frac{\nu^{\nu\mu/2}|\mathcal{C}|^{-\nu/2}|\hat{\mathcal{C}}|^{(\nu-\mu-1)/2}}{2^{\nu\mu/2}\Gamma_{\mu}[\nu/2]}\right)\exp^{-\frac{\nu}{2}\operatorname{Tr}\hat{\mathcal{C}}\mathcal{C}^{-1}}$$

Biased Estimator Precision Matrix:

 $\langle \widehat{\mathcal{P}}_{ij} \rangle = \frac{N_s - 1}{N_s - N_s - 2} \mathcal{P}_{ij}$, Press (1982)

Error scaling: $\sigma^2(\widehat{\mathcal{C}}_{ij}) = \frac{1}{N_z - 1} \left(\mathcal{C}_{ij}^2 + \mathcal{C}_{ii} \mathcal{C}_{jj} \right)$ Taylor, Joachimi &

$$\sigma^2(\widehat{\mathcal{P}}_{ij}) = A\left[(N_s - N_d)\mathcal{P}_{ij}^2 + (N_s - N_d - 2)\mathcal{P}_{ii}\mathcal{P}_{jj} \right],$$

What is the impact of non-linearities on covariance errors?

Testing Sampling Errors

Blot, Corasaniti, Amendola, Kitching (2016)

Unbiased Precision Matrix Estimator

- Divide DEUS-PUR in N_q = int (N_t/N_s)
- Compute <..>=1/N_g Sum

$$B_{\mathcal{P}} \equiv \frac{\operatorname{Tr} \langle \widehat{\mathcal{P}} \rangle - \operatorname{Tr} \mathcal{P}}{\operatorname{Tr} \mathcal{P}} = \frac{N_s - 1}{N_s - N_d - 2} - 1$$

Unbiased Estimator Precision Matrix not affected by non-linearities

Covariance Sampling Errors

On BAO scales Gaussian prediction to within 10%

Precision Sampling Errors

Error Scaling $\epsilon_{\mathcal{P}} = \sqrt{\frac{\sum_{i} \sigma^{2}(\widehat{\mathcal{P}}_{ii})}{\sum_{i} \langle \widehat{\mathcal{P}}_{ii} \rangle^{2}}} = \sqrt{\frac{2}{N_{s} - N_{d} - 4}},$

Fisher Forecast – Euclid-like Survey

Cosmological Parameters $\theta = \{\Omega_m, w, \sigma_8, n_s, \Omega_b, b_1, ..., b_{N_z}\}$

 $\bar{n}_g(z)$

 4.2×10^{-3}

 2.99×10^{-3}

 1.81×10^{-3}

 0.77×10^{-3}

 0.15×10^{-3}

z

0.5

0.7

1.0

1.5

2.0

 $P_z^g = b_z^2 P_z + \frac{1}{\bar{n}_g(z)} \qquad \operatorname{cov}_z^g(k_i, k_j) = b_z^4 \widehat{\mathcal{C}}_{ij} + 2b_z^2 [P_z(k_i) P_z(k_j)]^{1/2} \bar{n}_g^{-1}(z) + \bar{n}_g^{-2}(z)$

- 5 bins 0.5 < z < 2
- Marginalized over constant bias b_i

$$F_{\alpha\beta} = \sum_{l=1}^{N_z} \sum_{i,j=1}^{N_d} \frac{\partial P_{z_l}^g}{\partial \theta_{\alpha}}(k_i) \frac{\partial P_{z_l}^g}{\partial \theta_{\beta}}(k_j) \operatorname{cov}_{z_l}^g(k_i, k_j),$$

- Errors convergence for large N_r
- For N_r > 5000 Covariance Estimation Errors <1%

Conclusions

- Accounting for non-linearities at 1% level requires large volume high-resolution simulations for the clustering and large simulation ensembles for convariance
- Realization of benchmarks is challenging, but necessary and needs to be done only once
- More systematic comparison against benchmarks, of approximate numerical methods and semi-analytic approaches

Physicality of Newtonian Simulations

GR Effects (?)

- Newtonian gravity at dozens Gpc/h scales?
- On large scales at leading order in Φ, GR particletrajectories = ZA which is Newtonian solution at leading order
 Chisari & Zaldarriaga (2011)
- Purely relativistic effects only at 2nd order in Φ > Newtonian terms at 2nd order, but suppressed compared to ZA displacements
- Corrections to $P_{lin}(k)$ are $O(10^{-5})$ at z=49 and $O(10^{-3})$ at z=0 Rigopoulos & Valkenburg (2015)
- Confirmed by Relativistic N-body Simulations

Adamek et al. (2016)

Different N-body codes

Schneider et al. (2016)

Fisher Forecast – Euclid-like Survey

