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-‐  Why	  do	  we	  use	  cosmological	  simula2ons	  ?	  
-‐  What	  is	  the	  physical	  problem	  to	  treat?	  
-‐  Dark	  maCer	  simula2ons	  techniques	  (true	  simula2ons,	  I	  mean)	  
-‐  Limits	  of	  N-‐body	  simula2ons	  
-‐  Perspec2ves	  (adver2sement)	  

Plan	  



Why	  do	  we	  use	  (N-‐body)	  simula1ons	  ?	  
	  
To	  solve	  the	  dynamics	  of	  a	  physical	  system	  for	  which	  there	  is	  no	  
analy2cal	  solu2on	  
	  
In	  prac1ce:	  
	  
-‐  To	  understand	  the	  dynamics	  of	  a	  vey	  complex	  system,	  e.g.	  a	  
dark	  maCer	  halo	  (hence	  NFW)	  or	  a	  galaxy	  

-‐  To	  check	  the	  validity	  of	  some	  approxima2on,	  e.g.	  cosmological	  
perturba2on	  theory	  at	  large	  scales	  (BAOs)	  or	  some	  
phenomenological	  model,	  e.g.	  the	  halo	  model	  

-‐  To	  generate	  realis2c	  mock	  observa2ons,	  e.g.	  a	  mock	  galaxy	  
catalogue	  



Example: old plot of the power spectrum of the large scale galaxy distribution 

hCp://www.hep.upenn.edu/~max	  
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Dark matter : Vlasov 

Gas : Euler equations 

Equation of state 

Poisson equation 

+	  the	  ugly	  physics	  I	  wont	  discuss	  much	  except	  to	  feel	  sorry	  for	  
myself	  with	  e.g.	  my	  beau2ful	  10th	  order	  PT	  results:	  gas	  hea2ng/
cooling	  processes,	  star	  forma2on,	  feedback,	  etc	  

What	  is	  the	  physical	  problem	  to	  treat?	  



``Supercomoving’’ coordinates:  
The equations remain nearly unchanged  
(Martel & Shapiro 1998, MNRAS 297, 467) 

Note	  on	  how	  to	  take	  into	  account	  of	  the	  expansion	  of	  the	  
Universe	  in	  the	  previous	  equa1ons	  



3	  approaches	  to	  simulate	  the	  Universe	  
	  
1)  try	  to	  do	  everything	  including	  the	  treatment	  of	  the	  ugly	  

physics	  of	  the	  baryons	  in	  the	  simula2ons:	  given	  the	  complexity	  
of	  all	  the	  processes	  at	  game,	  it	  is	  not	  yet	  possible	  to	  simulate	  a	  
large	  volume	  of	  the	  Universe	  

2)  forget	  about	  the	  baryons	  and	  simulate	  only	  dark	  maCer	  which	  
follows	  ``only’’	  Vlasov-‐Poisson	  equa2ons:	  	  handy	  to	  test	  	  
perturba9on	  theory	  predic9ons,	  possible	  to	  generate	  very	  big	  
samples	  

3)  Feel	  guilty	  about	  2)	  and	  try	  to	  ``paint’’	  dark	  maCer	  simula2ons	  
by	  taking	  into	  account	  in	  the	  best	  way	  possible	  the	  ugly	  
physics,	  e.g.	  	  
	  a)	  semi-‐analy9cal	  models	  
	  b)	  probabilis9c	  approach	  using	  cross-‐correla9ons	  between	  hydro	  
	  simula9ons	  and	  dark	  ma>er	  simula9ons.	  	  



Dark	  maHer	  simula1ons	  techniques	  
Bertschinger,	  1998,	  ARA&A	  36,	  599	  
Colombi,	  	  2001	  NewAR	  45,	  373	  
Dolag et al., 2008, Space Science Review 134, 229	  	  	  

	  
	  

Dark matter: modelled with 
(macro-)particles which form an 
Hamiltonian system 

Collisionless dark matter or stars in a galaxy: incompressible fluid in 
phase-space (x,u). Direct modeling in phase-space: 6 dimensions ! 

The modeling in terms of macro-particles induces N-body relaxation effects 
due to particle-particle collisions 

A softening parameter ε is needed at small scales: each dark 
matter particle is a ``cloud’’ of typical (possibly varying) size ε or, 
equivalently, the force is softened at scales smaller or of the order 
of ε 



Various	  types	  of	  codes	  
	  

All	  the	  codes	  basically	  differ	  by	  the	  way	  Poisson	  equa1on	  is	  solved	  
	  

1)  Brute	  force	  with	  all	  the	  interac2ons	  between	  par2cles	  calculated	  
(PP)	  

2)  	  PM	  code	  :	  the	  ``plasma	  physicist	  approach’’	  
	  	   CIC (cloud in cell) scheme •  density	  is	  calculated	  on	  a	  grid	  of	  fixed	  
resolu2on	  by	  projec2ng	  the	  par2cles	  
with	  some	  interpola2on	  procedure	  e.g.	  
CIC	  or	  higher	  order	  (TSC)	   	  	  

•  Poisson	  equa2on	  is	  simply	  solved	  with	  
FFT	  

•  Force	  reinterpolated	  on	  each	  par2cle	  
with	  dual	  interpola2on	  

•  Soeening	  is	  therefore	  roughly	  given	  by	  
cell	  size.	  	  



3)	  Treecode:	  what	  is	  far	  can	  be	  summarized	  
	  

Appel	  1985,	  SIAM	  6,	  85;	  Barnes	  &	  HuC,	  1986,	  Nature	  324,	  446	  	  	  	  	  	  
GADGET1	  :	  Springel	  et	  al.	  2001,	  NewA	  6,	  79	  	  	  	  	  	  
	  	  

	  	  
Classical	  implementa2on:	  
•  Hierarchical	  division	  of	  

space	  on	  an	  ``oct	  tree’’,	  
un2l	  there	  is	  only	  one	  or	  
zero	  par2cle	  per	  box.	  

•  A	  box=a	  macro-‐par2cle	  if	  
d/D	  <	  θ,	  otherwise	  the	  
box	  is	  divided	  in	  8	  
subboxes	  and	  so	  on.	  

	  

d 

D 

A``quad tree’’  
Salmon & Warren 1994, Int. J. Supercomputer Applic. 8, 129 



	  
• 	  P3M	  :	  PP	  +	  PM.	  The	  PM	  force	  is	  supplemented	  with	  a	  small	  scale	  
contribu2on	  by	  direct	  local	  summa2on	  
	  
• 	  treePM	  :	  same	  as	  P3M	  but	  with	  a	  local	  treecode	  to	  augment	  the	  
resolu2on:	  faster	  ?	  	  
	  
• 	  AMR	  :	  local	  refinement	  of	  the	  PM	  grid.	  2	  methods:	  “patch	  
method”	  (hierarchy	  of	  embedded	  rectangular	  grids)	  or	  ART	  
(adap2ve	  refinement	  tree).	  Note	  :	  AP3M	  :	  P3M	  code	  with	  grid	  
refinement.	  
	  
• 	  Lagrangian	  approach	  :	  the	  PM	  grid	  changes	  shape	  according	  to	  the	  
flow	  
	  

3)	  Hybrid	  methods:	  
	  	  

	  	  

Hockney & Eastwood, 1981; Efstathiou et al. 1985, ApJS 57, 241 

Bagla, 2002, JApA 23, 185      GADGET2: Springel 2005, MNRAS 364, 1105 

Kravtsov et al. 1997, ApJS 111, 73     RAMSES: Teyssier 2002, A&A 385, 337 

Gnedin, 1995, ApJS 97, 231; Pen, 1995, ApJS 100, 269 



``Lagrangian’’	  approach	  

Pen	  1995	  



Possibly	  annoying	  features	  in	  each	  techniques	  

-‐  Brute	  force	  :	  well	  forget	  about	  it,	  way	  too	  costly	  
	  

-‐  PM	  :	  cheap,	  can	  provide	  robust	  results	  if	  used	  wisely	  but	  low	  
spa2al	  resolu2on.	  Probably	  the	  best	  tool	  to	  test	  PT	  predic2ons	  if	  
not	  trying	  to	  model	  biasing	  

-‐  Treecode	  :	  problem	  with	  force	  error	  calcula2ons:	  impossible	  to	  
start	  simula2ons	  at	  very	  high	  redshie	  

-‐  AMR	  :	  problem	  with	  varying	  soeening:	  symplec2city	  is	  broken:	  can	  
this	  be	  an	  issue,	  some2mes?	  Need	  more	  par2cles	  than	  treecode	  to	  
have	  same	  effec2ve	  mass	  resolu2on	  (in	  terms	  of	  DM	  halos	  mass	  
func2on)	  

-‐  P3M	  :	  small	  forces	  errors	  at	  the	  transi2on	  between	  PP	  and	  PM	  
regime	  	  

-‐  treePM	  :	  same	  issue	  as	  treecode,	  but	  certainly	  to	  a	  much	  lesser	  
extent,	  same	  issue	  as	  P3M	  

Limits	  of	  N-‐body	  simula1ons	  



Finite	  volume	  effects:	  
Non	  linear	  couplings	  	  
l0(t)	  	  <	  L/10	  –	  L/20	  

N-‐body	  relaxa2on	  
l0(t)	  >>	  λp=L/N1/3	  

Transcients	  
a(t)/a(ti)	  >>	  1	  

Finite	  volume	  effects:	  
Sta2s2cal	  bias	  

l	  	  <	  L/10	  –	  L/20	  

Force	  resolu2on:	  
l	  	  >	  a	  few	  ε	  

Resolu2on	  λe	  of	  the	  
Eulerian	  sampling	  grid	  

l	  >	  a	  few	  λe	  

Mass	  resolu2on	  
M/m	  >	  10-‐100	  

N-‐body	  relaxa2on	  	  
M/m	  >>	  1	  

Finite	  volume	  effects:	  
rare	  events	  
M/m	  <<	  Nmax	  
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Par1cularly	  annoying	  issues:	  
	  
Anisotropic	  growth	  of	  fluctua1ons	  
•  	  Discreteness	  effects:	  memory	  of	  the	  ini2al	  par2cle	  paCern	  :	  see	  e.g.	  

Marcos	  et	  al.	  2006,	  PRD	  73,	  103507;	  Joyce	  &	  Marcos	  2007	  PRD	  10,	  103505	  
for	  the	  grid	  

=>	  The	  correla2on	  length	  must	  be	  sufficiently	  large	  compared	  to	  the	  mean	  
interpar2cle	  distance	  to	  allow	  for	  sufficient	  mixing	  
	  
•  Finite	  box	  size	  effects:	  wrong	  mode	  coupling	  at	  large	  scales:	  see	  e.g.	  Seto	  

1999,	  ApJ	  523,	  24;	  Takahashi	  et	  al.,	  2008,	  MNRAS	  389,	  1675;	  Nishimichi	  et	  
al.	  2009,	  PASJ	  61,	  321	  

=>	  Need	  the	  box	  size	  to	  be	  (very)	  large	  compared	  to	  the	  correla2on	  length	  
	  
Other	  transcients	  due	  to	  to	  Zel’dovich	  approxima1on	  
see	  e.g.	  Crocce	  et	  al.	  2006,	  MNRAS	  373,	  369	  
=>	  must	  start	  at	  very	  high	  z	  or	  ini2al	  condi2ons	  must	  be	  generated	  at	  higher	  
order	  (2nd	  order)	  
	  



108 CHAPITRE 5. LES ÉQUATIONS DE VLASOV-POISSON : APPROCHE NUMÉRIQUE

Figure 5.10, suite, à t = 100. On note dans le panneau en bas à droite la présence d’une zone chaotique due au
bruit blanc des particules. Augmenter le nombre de particules retarde l’apparition de cette instabilité numérique,
qui ne devrait se manifester que sur le plan microscopique et après de nombreux temps dynamiques.
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bruit blanc des particules. Augmenter le nombre de particules retarde l’apparition de cette instabilité numérique,
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N-‐body	  simula1ons	  are	  noisy	  
	  

Example:	  phase-‐space	  of	  a	  1D	  simula2on	  with	  Gaussian	  ini2al	  condi2ons	  

“Exact”	  solu2on	  with	  the	  Waterbag	  method	  
Colombi	  &	  Touma	  (2008,	  2014)	  

N-‐body	  

holes	  

Suspect	  resonance	  

Nice	  «	  Landau	  damping	  »	  



Vlasov versus N-body: the Hénon sphere 3731

Figure 4. Same as in Fig. 2, but for a colder initial configuration with virial ratio R = 0.1. There is also an additional line of panels corresponding to the
GADGET simulation with N = 108 particles. Note the large R tail escaping from the system, corresponding to a fraction of the mass with positive energy (see e.g.
van Albada 1982; Joyce et al. 2009; Sylos Labini 2012).

it is difficult at this point to know if actual physical instabilities
build up at late times in the R = 0.1 case, because diffusion in the
Vlasov simulation might prevent the appearance of some unstable
modes.

While the irregular patterns observed in Figs 4 and 5 are defi-
nitely of numerical nature, the fact that they develop so easily may
indicate that the system is prone to react non-linearly to small per-
turbations. Uneven gaps between the filaments of the phase-space
density can be observed at t = 15 (third column of Fig. 4), even
in the (1024, 1024, 512) Vlasov simulation, and one might ex-

pect that they correspond to seeds of actual physical instabilities.
In this respect, the system might actually develop, at some point,
physical unstable modes. These results are quite suggestive of what
was obtained previously with a spherical shell code for cold and
self-similar systems (Henriksen & Widrow 1997).

Even with our N = 108 particle simulation, it is not clear
whether these unstable modes dominate over collective effects
due to discreteness. A better understanding of the phenomenon
would require a convergence study using even higher-resolution
simulations.

MNRAS 450, 3724–3741 (2015)
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Colombi	  et	  al.	  2015,	  MNRAS	  450,	  3724	  
	  

Spherical	  collapse	  of	  a	  Hénon	  sphere:	  Vlasov	  code	  versus	  N-‐body:	  collec1ve	  shot	  noise	  effects	  
Phase	  space	  for	  a	  slice	  of	  fixed	  angular	  momentum	  

Vlasov	  

N=108	  

N=107	  

N=106	  



coordinate axes so that no collisions were possible. Obviously,
a collisionless system with only one-dimensional perturbations
should remain one-dimensional. This fact is the basis of our
test; its violation means the code is collisional or that it
otherwise erroneously scatters particle orbits.

We made the test more relevant by tilting the plane of
collapse relative to the simulation cube. We set up a single
perturbation wave k 5 (2, 3, 5)kf(uku 5 6.16kf , where kf is the
fundamental mode) by Fourier transform on a grid of 643

particles. We began with an amplitude d [ (r 2 r̄)/r̄ 1 0.1 and
evolved for an expansion factor of 7.7 after the first shell
crossing, during which collisions are permitted by theory.
While the physical system should have no scattering, near
misses may generate scattering numerically. The role of the
symmetry simply makes scattering detectable. To perform the
comparison we used a PM code (Melott 1981, 1986), a P3M
code (kindly supplied by H. Couchman), and a Tree code
(Suginohara et al. 1991). We also tested a nested-grid particle-
mesh (NGPM) code (Splinter 1996). All runs had identical
(publicly available) initial conditions. The initial conditions for
the NGPM code were generated in the manner described
above for both the coarse and the fine grid. We also made
cross-check runs in which the perturbation k 5 (0, 0, 6)kf was
not tilted with respect to the cube.

The PM run was performed on a 643 mesh and duplicated on
a 1283 mesh to emulate a modification sometimes used, as well
as to verify the code independence of our results. PM tests
were made using traditional two-point differencing and the
Melott (1986) improved–force-resolution staggered-mesh
scheme. There was no significant difference in scattering, as we
report here. We performed otherwise identical P3M and Tree
tolerance parameter u 5 0.2 runs with e 5 0.1 and 1.0, as well
as a transitional P3M run with e 5 0.5. In the P3M code, we
used two choices of time-integration variable and varied the
time step greatly, assuring satisfaction of both Courant and
leapfrog stability conditions. The PM and NGPM codes
automatically test and adjust time steps as needed. The
adaptive smoothing length capability of the P3M code was
turned off, as suggested by Gelb & Bertschinger (1994). The
NGPM code had a refinement factor of 8, putting it close in
spatial resolution to the e 5 0.1 P3M run, but with 512 times
increased mass resolution (making it an HFHMR code).
Results of a much more extended study will be presented
elsewhere.

Figure 1 shows the overall configuration of the PM system
after collapse. All runs look roughly similar. Differences
between tilted runs are shown in Figure 2, in which slices of
one collapsed planar region are projected along the initial
perturbation axis. The only inhomogeneity should be projec-
tion of the initial lattice onto this plane. Some runs show
clumping, suggesting scattering error. All the erroneous
HFLMR runs (the P3M and Tree code runs with e , 1, and the
1283 mesh PM run) share softening lengths shorter than the
mean interparticle separation. The runs that performed well
(normal PM, P3M and Tree with e 5 1, and NGPM) all have
softening comparable to this distance; of course, for NGPM
this distance is considerably smaller, but at no collision
penalty. (Axis-aligned PM and P3M runs show the lattice, with
no clumping visible.)

We use as one quantitative measure the distribution of
particle velocities, which should be strictly normal to the
planes; we separate the velocities into components along the
normal and in the plane, Vplane 5 (V p1

2 1 V p2
2 )1/2. Figure 3 shows

scatter plots for 1000 randomly selected particles from each of
our runs. Many particles are hidden by superposition. The
correct result is a line along the Vnorm axis. This line is
approached only by nonsparse PM and NGPM, by P3M and
Tree as the short-range force is turned off, and by axis-aligned
runs that have only head-on collisions. With e 5 0.1, the most
common choice, the error is large.

The relative error can be made quantitative by comparing
the median speed in the plane to the median speed along the
normal, as shown in Table 1. Another measure is the kinetic
energy; the mean in the plane and along the normal are also
shown in Table 1. Lastly, we show the median value of dplane,
the distance in mesh units by which particles have strayed off
the normal trajectory. All values are the mean or median of
10,000 particles (subgrid particles in NGPM). Our axis-aligned
PM and P3M runs had zero off-normal velocity (within com-
puter precision).

Figure 4 shows a phase-space diagram of a single sheet,
including the normal displacement and velocity, with the other
four phase-space dimensions suppressed. The correct solution
is a spiral (Doroshkevich et al. 1980; Melott 1982a; Bond,
Szalay, & White 1983). The codes that preserve this pattern
are those with softening comparable to the mean interparticle
separation.

We can verify that scattering occurs from encounters, not
from the initial gravity fields, by noting that off-normal com-
ponents are small until shell crossing in all codes; they increase
strongly in the inclined HFLMR codes as particles pass each
other.

3. DISCUSSION

We have shown that HFLMR computational methods in
widespread use for gravitational clustering in cosmology per-
form incorrectly on a simple test problem because they try to
model a continuous system with discrete masses. The PM and
NGPM methods (as normally used) are able to handle this test
because there is no evasion of the discreteness limitation. PM

FIG. 1.—Configuration of particles at the end of our PM simulation. The
other simulations look much the same, except for more inhomogeneity in some
cases.

L80 MELOTT ET AL. Vol. 479

can be forced to fail by increasing the lattice resolution beyond
appropriate limits. HFLMR methods work properly if the
short-range force is turned off or if they are forced to align
with the coordinate axes.

Since convergence to the proper behavior is very slow (e.g.,
Hockney 1971), past comparisons by varying particle number
have not revealed this problem (e.g., Efstathiou & Eastwood
1981). Coupling these incorrectly evolved systems to hydrody-
namics will guarantee that the simulation is done in the wrong
background gravitational potential. We do not claim that the
effect occurs on larger scales. Melott & Shandarin (1990), Little,
Weinberg, & Park (1991), and Melott & Shandarin (1993)
have shown that small-scale effects scarcely propagate to large
scales, but more quantitative study is needed. However, errors
would only stop growing in voids or in regions where the
particle density exceeds e23.

Questions may be raised about the relevance of our exam-
ple. Galaxies are not infinite planes. However, the first col-
lapse on any scale is expected to be sheetlike (Shandarin et al.
1995; Kuhlman et al. 1996; Gouda 1996), so there is ample
opportunity for our test situation to arise. Furthermore,
collisionality operates in the absence of symmetry; our planar
collapse study simply makes it starkly obvious. One may argue
that since collapsed pancakes are unstable to small-scale
perturbations, the HFLMR codes model them correctly, jus-

tifying the results they give for small e. On the other hand,
since there is no small-scale power in the initial conditions,
these codes are artificially producing power on small scales by
the growth of shot noise. The results of a simulation should be
a consequence of initial conditions that were imposed. This
point is illustrated in the orientation dependence of the
HFLMR codes. Since we get two completely different results
depending on orientation, one must ask which result is correct.
Most importantly, our results serve to raise the question of
whether a code performs well overall in a complex nonlinear
problem when it cannot replicate a simple test case. As this
Letter was going to press, the authors learned of the work of
Park (1997), in which spherical collapse is studied, producing
conclusions close to ours. Values e 5 0.01 or even smaller are
used in clustering studies.

One might hope that realistic cosmological scenarios with
power on all scales avoid this problem. Impressed perturba-
tions might overwhelm discreteness if the spectrum is normal-
ized to the shot-noise level at the particle Nyquist frequency
(Efstathiou et al. 1985). We tested this possibility by putting in
an inclined plane wave close to the particle Nyquist frequency
at the white-noise amplitude. Again we found strong scattering
in a e 5 0.1 P3M run and essentially none in PM. At this short
wavelength the resolution limitations of PM show themselves

FIG. 2.—A slice of one of the planes from each cube, seen projected along the normal to the plane. The dimensions of the slice are 16 3 16 3 4. To construct the
NGPM slice, a slice of size 4 3 4 3 1 was extracted from the subgrid particles and repeated periodically to produce a slice of size 16 3 16 3 4. This slice was then
sampled to reduce the number of particles to roughly that of the other runs. top row: PM with one particle per cell, PM with one particle per 8 cells (a common
“resolution-increasing” procedure), and NGPM (subgrid). Middle row: P3M with various values of e. Bottom row: Tree code with various values of e, and the correct
result, which was constructed by propagating particles along normals to the plane; the lines come from the tilted projection of the cubic lattice. This projection
represents the standard of comparison for all the codes except NGPM, which shows the correct appearance.

No. 2, 1997 ERROR IN N-BODY SIMULATIONS L81
MeloC,	  Shandarin,	  Splinter	  &	  Suto	  1997,	  ApJ	  479,	  L79	  
MeloC,	  2007	  arXiv	  0709.0745	  	  
	  

Par1cularly	  catastrophic	  illustra1on	  showing	  that	  in	  principle	  
soZening	  length	  should	  be	  larger	  than	  interpar1cle	  distance:	  single	  
oblique	  sine	  wave	  	  

``Correct’’	  result	  at	  the	  end	  of	  the	  simula2on	  

Various	  experiments	  
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Figure 3. Snapshots of a slice of the system for the different ICs (BCC, top left; FCC, top right; SC, bottom right; glass, bottom left) at a = 1 (upper four
panels) and a = 23 (bottom four panels).
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VP limit are different from the two effects envisaged usually which
we listed above. First, they are dynamical effects which modify
the evolution of any given mode in a way which is independent
of the initial conditions. Secondly, they are clearly not two-body
collisional effects.21 The effect they describe can be characterized
physically as a dynamical sparse sampling effect: PLT compared
with its VP limit tells us how the evolution of a fluctuation de-
pends on the spatial density of the sampling particles. An important
question is then evidently to understand how this physical effect –
which there is no reason to believe should go away when we pass
to the non-linear regime – quantitatively affects results in the latter
regime. We will return to this point in our conclusions.

3 A C A L I B R AT E D N U M E R I C A L S T U DY
OF DISC RETENESS EFFECTS

We return now to the practical question of how small ! needs to be
for a measured quantity to have converged to a desired precision.
Since the force smoothing ε places a lower bound on the spatial
resolution, a simplified, more specific, form of the question is: how
small does ! have to be in order that, at any given redshift, the
effects of discreteness are negligible down to scales of order ε?
The answer provided by the ‘common wisdom’ above is that ! is
sufficiently small, in typical simulations, if !/ε is less than about
100 (see e.g. Knebe et al. 2000). According to the ‘dissenting views’
! must be at least as small as ε.

One way of determining, in principle, which view is correct is
evidently to compare results from simulations with large !1/ε in
the range !1 > r > ε with those obtained in much higher resolution
simulations, with !2 ≤ ε " !1. This is indeed the strategy advocated
in Splinter et al. (1998), which reports a study of this type down to a
resolution !2 = ε. It concludes, as noted above, that there are signif-
icant differences in results, i.e. no evidence for convergence, in the
range !1 > r > !2. Other authors (Knebe et al. 2000) argue, however,
that these differences are ascribable to ‘erroneous evolution in HR
runs’. The difficulty in reaching a convincing conclusion is that the
questions of discreteness effects are intertwined with numerical and
finite size effects. While such differences should be resolvable by
further numerical tests, this would require considerable investment
of resources which, apparently because of the wide acceptance of
the ‘common wisdom’, has not been made.22

Instead of undertaking such a numerical study – which, given the
modest numerical resources at our disposition, would not in any
case likely to be any more conclusive than that reported by Splinter
et al. (1998) – we focus in the rest of this paper on another kind
of test. We will see that this will allow us to reach conclusions,
with modest-sized (but very well numerically converged) simula-
tions, about the central issue: the validity/precision of results in the
range of scales around or below !, in simulations with ! # ε. The
aim is to provide a method which gives a non-trivial lower bound
on discreteness error in such simulations. To do so, we simply
compare the results of simulations from identical theoretical initial
conditions, changing only the choice of the discreteness parameter
preIC, i.e. the pre-initial configuration. We can then study how this
error depends on time and scale. Although the measured effects

21 To make this very explicit, we have shown in Joyce & Marcos (2007a) that
the inclusion of a simple Plummer smoothing in the force actually increases
the difference between PLT and the VP limit for unsmoothed gravity.
22 See, however, the recent paper by Romeo et al. (2008a), which we will
comment on in our conclusions.

are quite small – at the most of the order of 5 per cent in the PS
for the times and scales relevant to cosmological simulations – we
can clearly establish, using the analytical PLT formalism combined
with numerical tests of their dependence on ! and ε, that they are
indeed discreteness effects. We can then address in a controlled way
the question of how far ! needs to be extrapolated so that one can
be confident that the true systematic errors due to discreteness have
converged to significantly less than this lower bound (e.g. to less than
1 per cent).

Rather than considering a specific cosmological model, we con-
sider a simple power-law PS with exponent n = −2, evolved in an
EdS universe. This choice is both suitable for our study as it is simple
– introducing no characteristic scale in the input model – and close
to the currently favoured CDM-like cosmological model, which has
an initial PS with effective exponent ranging between n ≈ −1 and
≈ −3 over the relevant range of scales. In particular, we note that
this PS is, like these cosmological models, long-wavelength domi-
nated so that the very efficient transfer of power from long to short
wavelengths which, as we have discussed above, is believed to play
a role in wiping out discreteness effects, should be well represented.
We will comment further in our conclusions on the generalization
to other initial conditions, and specifically to those of currently
favoured cosmological models.

All our simulations have been performed using the publically
available parallel tree-mesh code GADGET2 (Springel, Yoshida &
White 2001). We use this single (widely used and highly tested) code
for our study for the reasons we discussed above: the discreteness
effects we are trying to understand and control for are distinct
from differences arising between different codes, and indeed distinct
from any dependence of results on the numerical parameters of
a given code. The ‘calibration’ of our results with our analytic
tools here provides in fact a robust check that the GADGET2 code’s
integration of the N-body equations of motion is sufficiently precise
that this is indeed the case. Comparison with other codes would
be, in the relevant regime, a check on the accuracy of these codes,
rather than a check on our results. In the regime where our analytic
results do not apply, we can have, of course, less confidence in
the identification of our measured effects as physical discreteness
effects, and a comparison with other codes could be instructive. We
will address this issue below, where we give details of the detailed
checks of numerical convergence of our results which we have
performed using GADGET2.

3.1 Initial conditions

We use the standard method, based on the Zeldovich approximation,
to set up initial conditions by applying appropriate displacements
to four different preIC: a SC lattice, a BCC lattice, a FCC lattice
and a glass configuration, shown in Fig. 1.

Our reference set of simulations, which we denote as S1, have the
number of particles shown in Table 1. The numbers for the BCC and

Figure 1. From left- to right-hand side: unit cell of the SC, BCC and FCC
lattices.
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Figure 3. Snapshots of a slice of the system for the different ICs (BCC, top left; FCC, top right; SC, bottom right; glass, bottom left) at a = 1 (upper four
panels) and a = 23 (bottom four panels).
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FIG. 4: Discreteness factor Dδρ(k, t) quantifying the modifi-
cation with respect to the fluid limit (Dδρ(k, t) = 1) of the
power in the mode k of the evolved density fluctuation field,
for k in the FBZ. The plot is given, as for Fig. 2, at a = 5
(for a simulation starting at a = 1), for a 163 simple cubic
lattice. Also shown is a curve corresponding to the same quan-
tity averaged over all k with k in one of bins of equal width
∆k = 0.03kN , for a 643 simple cubic lattice. (The points
of this 643 calculation, which are not shown, just trace more
densely the behaviour of the points shown.)

where, using the definitions given above, we have

|k̂ ·E(k, t)|2 =

[

3
∑

n=1

[Un(k, t) +
2

3t0
Vn(k, t)](ên · k̂)2

]2

(46)
instead of the expression in Eq. (34) for the analogous
quantity for the PS of the displacement fields.

In Fig. 4 is shown Dδρ(k, t), at a = 5 as for the anal-
ogous Fig. 2 for the displacement fields in the previous
subsection. The two figures are in fact very similar, par-
ticularly at smaller k. The reason is the same one which
explained the similarity between Fig. 2 and the optical
branch of Fig. 1: the most rapidly growing mode on this
branch already dominates at this time so that the differ-
ence between the expression in Eqs. (34) and (46) reduces
to a trivial time independent factor. Indeed we have now

Dδρ(k, t ! t0) ≈ (k̂ · êmax(k))4 (47)

×
[

(2 + 3α+
max(k))

3(α−
max(k) + α+

max(k))

]2(
t

t0

)2[α−

max(k)− 2
3
]

,

which differs from Eqs. (36) only by the power of the
product k̂ · êmax(k). We do not plot the analogous curves
to those of Fig. 3 as the results look essentially the same.

At a = 5 (i.e. at the time of shell crossing in a typi-
cal cosmological N -body simulation) our Fig. 4 is a plot
of the fractional discrepancy between the theoretically
evolved power (by FLT) and the power as evolved in the
discretization of this system (by PLT). The fractional
error introduced by the discretization is largest, unsur-
prisingly, for the modes at the very largest wavenum-
bers (k =

√
3kN , at the extremities of the first Brillouin

zone), and decreases as k does. At a = 5 the power in
the largest mode is reduced to about one third of its fluid
value, while around k = kN the fractional error varies
from about +10% to more than −50%. At k = kN/2 it
varies from +5% to about −20%, while at k = kN/4 the
total spread is about 10%.

In Fig. 4 is shown also an average of Dδρ(k, a) (at
a = 5) over narrow bins of equal width in k, for a larger
643 lattice. We see that this average is dominated, at
this time, by the more numerous modes with growth co-
efficients which are smaller than the fluid one. We see
that this average describes at all k a net slowing down
of the evolution of the power in the density fluctuations,
ranging from slightly more than 30% at the Nyquist fre-
quency, to 10% at half this frequency, and down to about
3 − 4% at one quarter. It is straightforward to refine
these estimates given the precise parameters of a simu-
lation (i.e. the initial amplitudes to determine time of
shell-crossing). In our conclusions we will discuss the
importance of these effects, and how they might be cor-
rected for in simulations.

2. PS outside the first Brillouin zone

For k outside the FBZ, we have in Eq. (42) only the
non-trivial contribution from the third term. Taking an
input theoretical PS of the form

Pth(k) = Aknf(k/kc) (48)

where f(k/kc) is a function which cuts off the PS at k >
kc, it is straightforward to show (see [5] for further detail)
that this term can be written

P (1)
d (k) = Ak2kn−2

N I(k) (49)

where

I(k) =
∑

h "=0

[k̂ ·E(h − k, t)]2
(

|h − k|
kN

)n−2

×f

(

|h − k|
kc

)

ΘFBZ(h − k) (50)

where h = 2kNm, and the sum runs over all integer vec-
tors m, and ΘFBZ(h−k) is a three dimensional Heaviside
function which is equal to unity inside the first Brillouin
zone, and zero elsewhere. This cut-off is imposed, as dis-
cussed above, in order to avoid aliasing effects.

At a given k the sum I(k) can pick up contributions
only from a single vector h, the one which lies inside the
FBZ when translated by −k. It thus has the intrinsic
periodicity of the lattice PS itself, i.e., I(k) = I(k +
h), and it thus suffices to calculate it for vectors k such
that kN ≤ ki < 2kN . Just outside the FBZ it picks
up contributions from h such that h − k lies just inside
the FBZ, and thus of order f(kN/kc), while at the larger
values k ∼ 2kN it picks up contributions from h such that

Joyce	  &	  Marcos	  2007	  
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simpliÐed as follows (Suto & Sasaki 1991) :

P22(k) \ k3
98(2n)2

P
0

=
drP1(kr)

P
~1

1
dxP1[k(1 ] r2 [ 2rx)1@2]

(3r ] 7x [ 10rx2)2
(1 ] r2 [ 2rx)2 , (36)

P13(k) \ k3
252(2n)2 P1(k)

P
0

=
drP1(kr)

C12
r2 [ 158 ] 100r2 [ 42r4 ] 3

r3 (r2 [ 1)3(7r2 ] 2) ln
K 1 ] r
1 [ r

K D
, (37)

and we deÐne the total second-order moment in inÐnite-volume limit as follows :P2(k)

P2(k) 4 P22(k) ] P13(k) . (38)

Equations (36) and (37) diverge for some pure power-law models given in equation (21) (Vishniac 1983 ; Makino et al. 1992 ;
see also Jain & Bertschinger 1996). Here we introduce a large-wavenumber cuto† to the linear power spectrum atP1(k)

assuming that it roughly corresponds to the Nyquist frequency, which is determined by the separation ofkmax \ Nkboxparticles (N3 is the number of adopted particles) :

P1(k) \ 4
5
6
0
0

Akn (0 ¹ k ¹ kmax) ,
0 (kmax \ k) .

(39)

Again we discuss quantities for which the normalization factor A is irrelevant. As we see later, our analysis of small-k modes
depends only very weakly on this large-k cuto†. Second-order power spectra in inÐnite volume are given explicitly in Makino
et al. (1992) and Scoccimarro & Frieman (1996) for this power spectrum (eq. [39]) with spectral indices n \ 1,0, [ 1, and [2.
We adopt their analytic results and compare them with our results which include e†ects of the periodic boundaryP2V

(k),
condition.

In Figure 3 we plot the ratio by ( Ðlled and open) squares for modes k with In this Ðgure we ÐxP2V
(k)/P2(k) o k o /kbox ¹ 5.3

the largest wavenumber by N \ 128. For models with n \ 1 and 0 the second-order power spectra in Ðnite volume [P2V
(k)]

reproduce the desired results in inÐnite volume almost perfectly even for the smallest wavenumber In the case of[P2(k)] kbox.the n \ [1 model the di†erence between and becomes smaller than 10% for modes withP2V
(k) P2(k) k/kbox Z 4.

For n \ [1 and [2 models anisotropies of modes are apparent for smaller k. We have found numerically that the
correction terms in equations (31) and (32) play important roles for these anisotropies and Ñuctuations. In Figure 3 the Ðlled
squares represent a subset of the wave modes k that are parallel to the direction (1,0,0) (we denote these modes by k

A
),

including permutations between and Open squares denote other modes. We can see that modes work ask
x
, k

y
, k

z
. k

Arepresentative examples of the deviations due to the periodic boundary condition. Thus we plot the ratio only forP2V
(k)/P2(k)

modes in Figure 4. In this Ðgure two curves correspond to N \ 128 and N \ 256. Two curves coincide almost perfectlyk
Aand show that our results for smaller k depend only very weakly on the adopted cuto† wavenumber with akmax \ Nkboxreasonable choice N Z 128.

FIG. 3.ÈRatios of the second-order power spectra in Ðnite volume, to those in inÐnite volume, We Ðx the cuto† wavenumber at N\128.P2V
(k), P2(k).

Filled squares represent a subset of modes that belong to the modes (see main text for detail). Open squares denote other modes. Solid lines represent thek
Apredictions of the simple method based on the e†ective linear power spectrum (eq. [40]).

3 Note that di†erent modes exist at the same o k o along with permutations among and (e.g., 12 ] 12 ] 42 \ 02 ] 32 ] 32).k
x
, k

y
, k

z

2nd	  order	  power-‐spectrum:	  finite	  box	  versus	  infinite	  
Seto	  1999,	  ApJ	  523,	  24	  
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Figure 2. Evolution of the deviation of the power amplitude with respect to the linear-theory prediction. The dots are the measurements from our simulation,
and red solid lines are the model prediction using the second-order perturbation theory. The integers denote n2 = n2

1 + n2
2 + n3

3 of wavenumbers, and the figures
show different range of n2, n2 = 1–8 (upper left-hand panel), n2 = 9–16 (upper right-hand panel), n2 = 17–24 (lower left-hand panel) and n2 = 25–32 (lower
right-hand panel).

Fig. 3 is the same as Fig. 2, but for phase evolution. We plot
the results only for modes with n1 ≥ n2 ≥ n3, because the mean
of the phase at k,

∑
φ(k), is zero [since φ(k) + φ(−k) = 0]. The

phase shifts are typically ≈0.1 rad at z = 0. Perturbation theory
well reproduces the results. Even if there are infinite modes, the
right-hand side of equation (7) still remains. The phase shift is not
due to the finite box size effect.

Previously, Ryden & Gramann (1991) and Gramann (1992) stud-
ied the evolution of amplitude and phase in each mode using two-
dimensional simulations. They also calculated second-order pertur-
bation theory and found the deviation from the linear theory grows
in proportional to the scale factor in the Einstein–de Sitter (EdS)
model. Suginohara & Suto (1991), Soda & Suto (1992) and Jain &
Bertschinger (1998) also examined the non-linear evolution in each
mode. However, they did not compare the theoretical prediction
with the simulation results in detail. Their motivations were to un-
derstand the evolution of the density fluctuations in the non-linear
regime, whereas our interest here is in the growth of perturbations
at the linear scale.

5 STATISTIC AL ANALYSIS

The previous section considers second-order effects for a single
realization. In this section, we run 100 simulations to calculate

dispersions of amplitude and phase deviations from linear theory.
We prepare the 100 realizations for each of three box sizes of L =
500 h−1 Mpc, 1 and 2 h−1 Gpc, and zin = 30, 20 and 10, respectively.

Fig. 4 shows the remaining amplitude dispersions from the linear-
theory prediction after correcting for the initial randomness at z =
0 for L = 500 h−1 Mpc (top panel), L = 1 h−1 Gpc (middle panel)
and L = 2 h−1 Gpc (bottom panel). Since we already subtract the
initial deviations due to the Gaussian distribution, the residuals arise
from the mode coupling during the evolution. The grey dots with
error bars are the means with 1σ scatters. By using a sufficiently
large number of realizations, the means converge to the true values
(solid line), and the magnitude of the dispersions is insensitive to
the number of realizations. For L = 500 h−1 Mpc, the dispersions
are ∼10 per cent near the first peak, and ∼5 per cent even for a
very large volume of 2 h−1 Gpc on a side. The dashed lines show
the theoretical prediction of the 1σ scatter, which is the rms of the
second term in equation (6):

σ 2
amp ≡

〈[
P̂ (k, z)/P̂ (k, zin)

D(z)2/D2
in

− 1

]2〉

= 4P22(k, zin)
P11(k, zin)

1
#Nk

[
D(z)
Din

]2

. (11)
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Table 2. Notations for various density contrasts and power spectra.

Meaning Description

P L(k,z) Input linear power spectrum section 2

ıL
k;n.z/ Density contrast Gaussian-sampled from P L(k,z) for the n-th realization section 3

ı
N -body
k;n .z/ Density contrast realized by particles using a 2LPT displacement and section 3

evolved by N -body simulation
OP N -body(ki ,z) Power spectrum of the i -th wavenumber bin estimated from N -body equation (3)

simulations taking average over finite modes and realizations

ıPT
k;n .z/ ıL

k;n.z/ evolved by perturbation theory equation (11)
OP PT(ki ,z) Same as OP N -body(ki ,z) but calculated from ıPT

k;n .z/, not ıN -body
k;n .z/ equation (10)

OP N -body
corrected(ki ,z) OP N -body(k,z) corrected for the effect of finite volume equation (12)

OP N -body.ki ;z/ !
!ˇ̌
ˇıN -body

k;n .z/
ˇ̌
ˇ
2
"

i

! 1

N mode
i N run

X

kmin
i <jkj<kmax

i

N runX

n=1

ˇ̌
ˇıN -body

k;n .z/
ˇ̌
ˇ
2

;

(3)

ki ! 1

N mode
i

X

kmin
i <jkj<kmax

i

jkj ; (4)

where N mode
i and N run are the numbers of modes in the i -th

wavenumber bin and the number of realizations, and kmin
i and

kmax
i are the minimum and maximum wavenumbers, respec-

tively. Note that we used h:::ii to denote the average over
modes in the i -th wavenumber bin and over realizations; this
average is not equivalent to the true ensemble average, and
the difference corresponds to the finiteness of the simulated
volume (or number of modes). In what followed, we adopted
equally spaced bins with width ∆k = 0.005hMpc"1.

Finally, the standard errors of the averaged power spectra of
equation (3) could be estimated by

h
error of OP N -body.ki ;z/

i2

=

*#ˇ̌
ˇıN -body

k;n .z/
ˇ̌
ˇ
2

" OP N -body.ki ;z/

$2
+

i

N mode
i N run

: (5)

Note that this value indicates the uncertainty in the estima-
tion of the central value, not the variance among the modes
in each bin.

4.2. Corrections to the Power Spectrum

The matter power spectrum measured from simulations devi-
ates from the prediction for the ideal ensemble average, which
can be obtained only in the limit of an infinite number of
realizations or an infinite box size. This deviation is actu-
ally important for interpreting the results of N -body simula-
tions, as shown by Takahashi et al. (2008); the matter power
spectrum measured from their N -body simulations does not
agree with the predictions of linear theory nor SPT, even at
very large scales (e.g., k . 0.1 hMpc"1). They examined the

effect of a finite box size (hence a finite number of modes), and
showed that the finite-mode effect is actually responsible for
the anomalous growth rate. Here, we briefly summarize their
formulation of the correction.

We follow the standard notation used in cosmological pertur-
bation theory [see Bernardeau et al. (2002) for a review]. Let
us expand the density perturbations in k-space for the n-th
N -body realization as

ı
N -body
k;n .z/ = ıL

k;n.z/ + ı
.2/
k;n.z/ + :::: (6)

Here, the second-order term is expressed as a sum of contribu-
tions from mode couplings between two modes:

ı
.2/
k;n.z/ =

X

p

F .2/.p;k " pIz/ıL
p;n.z/ıL

k"p;n.z/; (7)

where the symmetrized second-order kernel F .2/ is
expressed as

F .2/.x;yIz/ =
1

2
Œ1 + !.z/" +

1

2

x # y
xy

%
x

y
+

y

x

&

+
1

2
Œ1 " !.z/"

.x # y/2

x2y2
; (8)

!.z/ $ 3

7
Ω"1=143

m .z/: (9)

In practice, the time dependence of the kernel function is very
weak, and thus we simply set ! = 3=7 in what follows. The
power spectrum up to the third order in ıL

k;n.z/ averaged over
modes in the i -th wavenumber bin and over realizations is

OP PT.ki ;z/ !
Dˇ̌

ıPT
k;n

ˇ̌2
E

i
; (10)

ˇ̌
ıPT
k;n

ˇ̌2 !
ˇ̌
ıL
k;n.z/

ˇ̌2 + 2<
h
ıL
k;n.z/ı

.2/
"k;n.z/

i
; (11)

where <Œ:::" stands for the real part of a complex number.
Though the second term should vanish for an ensemble average
over infinite modes, it does not vanish exactly if the number of
Fourier modes is finite. The first term grows as / D2

+.z/, while
the second term grows as / D3

+.z/, and thus the second term
becomes important at late time (i.e., at low redshifts).

The method for correcting the deviation from the ideal
ensemble average is to multiply OP N -body(ki ,z) by the ratio of
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Table 2. Notations for various density contrasts and power spectra.

Meaning Description

P L(k,z) Input linear power spectrum section 2

ıL
k;n.z/ Density contrast Gaussian-sampled from P L(k,z) for the n-th realization section 3

ı
N -body
k;n .z/ Density contrast realized by particles using a 2LPT displacement and section 3

evolved by N -body simulation
OP N -body(ki ,z) Power spectrum of the i -th wavenumber bin estimated from N -body equation (3)

simulations taking average over finite modes and realizations

ıPT
k;n .z/ ıL

k;n.z/ evolved by perturbation theory equation (11)
OP PT(ki ,z) Same as OP N -body(ki ,z) but calculated from ıPT

k;n .z/, not ıN -body
k;n .z/ equation (10)

OP N -body
corrected(ki ,z) OP N -body(k,z) corrected for the effect of finite volume equation (12)
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! 1
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i N run

X

kmin
i <jkj<kmax

i

N runX

n=1

ˇ̌
ˇıN -body

k;n .z/
ˇ̌
ˇ
2

;
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i
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where N mode
i and N run are the numbers of modes in the i -th

wavenumber bin and the number of realizations, and kmin
i and

kmax
i are the minimum and maximum wavenumbers, respec-

tively. Note that we used h:::ii to denote the average over
modes in the i -th wavenumber bin and over realizations; this
average is not equivalent to the true ensemble average, and
the difference corresponds to the finiteness of the simulated
volume (or number of modes). In what followed, we adopted
equally spaced bins with width ∆k = 0.005hMpc"1.

Finally, the standard errors of the averaged power spectra of
equation (3) could be estimated by

h
error of OP N -body.ki ;z/
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=

*#ˇ̌
ˇıN -body

k;n .z/
ˇ̌
ˇ
2

" OP N -body.ki ;z/

$2
+

i

N mode
i N run

: (5)

Note that this value indicates the uncertainty in the estima-
tion of the central value, not the variance among the modes
in each bin.

4.2. Corrections to the Power Spectrum

The matter power spectrum measured from simulations devi-
ates from the prediction for the ideal ensemble average, which
can be obtained only in the limit of an infinite number of
realizations or an infinite box size. This deviation is actu-
ally important for interpreting the results of N -body simula-
tions, as shown by Takahashi et al. (2008); the matter power
spectrum measured from their N -body simulations does not
agree with the predictions of linear theory nor SPT, even at
very large scales (e.g., k . 0.1 hMpc"1). They examined the

effect of a finite box size (hence a finite number of modes), and
showed that the finite-mode effect is actually responsible for
the anomalous growth rate. Here, we briefly summarize their
formulation of the correction.

We follow the standard notation used in cosmological pertur-
bation theory [see Bernardeau et al. (2002) for a review]. Let
us expand the density perturbations in k-space for the n-th
N -body realization as

ı
N -body
k;n .z/ = ıL

k;n.z/ + ı
.2/
k;n.z/ + :::: (6)

Here, the second-order term is expressed as a sum of contribu-
tions from mode couplings between two modes:

ı
.2/
k;n.z/ =

X

p

F .2/.p;k " pIz/ıL
p;n.z/ıL

k"p;n.z/; (7)

where the symmetrized second-order kernel F .2/ is
expressed as

F .2/.x;yIz/ =
1

2
Œ1 + !.z/" +

1

2

x # y
xy

%
x

y
+

y

x

&

+
1

2
Œ1 " !.z/"

.x # y/2

x2y2
; (8)

!.z/ $ 3

7
Ω"1=143

m .z/: (9)

In practice, the time dependence of the kernel function is very
weak, and thus we simply set ! = 3=7 in what follows. The
power spectrum up to the third order in ıL

k;n.z/ averaged over
modes in the i -th wavenumber bin and over realizations is

OP PT.ki ;z/ !
Dˇ̌

ıPT
k;n

ˇ̌2
E

i
; (10)

ˇ̌
ıPT
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ˇ̌2 !
ˇ̌
ıL
k;n.z/

ˇ̌2 + 2<
h
ıL
k;n.z/ı

.2/
"k;n.z/

i
; (11)

where <Œ:::" stands for the real part of a complex number.
Though the second term should vanish for an ensemble average
over infinite modes, it does not vanish exactly if the number of
Fourier modes is finite. The first term grows as / D2

+.z/, while
the second term grows as / D3

+.z/, and thus the second term
becomes important at late time (i.e., at low redshifts).

The method for correcting the deviation from the ideal
ensemble average is to multiply OP N -body(ki ,z) by the ratio of
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Fig. 2. Comparisons of the simulation power spectra and analytical predictions. Left: Power spectra of our simulations before correction, normalized by
the no-wiggle formula; top z = 3, middle z = 1, bottom z = 0. The error bars show the standard errors [equation (5)]. The lines are theoretical predictions
described in section 2: dotted, standard perturbation theory (SPT); dot-dashed, renormalized perturbation theory (RPT); dashed, closure approximation
(CLA); solid, linear theory (LIN). Right: Same as the left panel, but we plot the difference between the RPT and the four other predictions.

OP PT(ki ,z) and P L(ki ,z):

OP N-body
corrected.ki ;z/ ! OP N-body.ki ;z/ " P L.ki ;z/= OP PT.ki ;z/:

(12)

The individual random nature of each N -body run in both
OP N-body(ki ,z) and OP PT(ki ,z) is weakened by this proce-

dure [equation (12)] as long as the predictions of perturbation
theory are sufficiently accurate. This method does not bias the
corrected value of the power spectrum, even if the perturbation
theory breaks down, since OP PT(ki ,z) approaches P L(ki ,z) in
the limit of an infinite number of Fourier modes.

As in equation (5), the standard errors of equation (12) can
be estimated as

h
error of OP N -body

corrected.ki ;z/
i2

=

*!ˇ̌
ˇıN -body

k;n .z/
ˇ̌
ˇ
2

# OP N-body.ki ;z/
OPPT.ki ;z/

ˇ̌
ıPT
k;n .z/

ˇ̌2
"2

+

i

N runN mode
i

:

(13)

The average of
ˇ̌
ˇıN -body

k;n .z/
ˇ̌
ˇ
2

is OP N -body(ki ,z), while that of
ˇ̌
ıPT
k;n .z/

ˇ̌2
is OP PT(ki ,z), and thus we multiply the ratio in the

second term in the numerator to adjust the mean values.

5. Results

5.1. Comparison between N -Body Simulations and Analytic
Models

As mentioned above, the accuracy of N -body simulations,
themselves, is not perfect, and we do not regard them as being

perfect calibrators of theoretical models. Instead, we compare
the power spectrum of our simulations with those from theo-
retical predictions while aiming at determining the reliable
range of wavenumbers in which both simulations and theoret-
ical models agree.

We first compare the averaged power spectrum over the four
realizations without any corrections to the theoretical predic-
tions. The left panel of figure 2 plots the fractional differences
from the linear power spectrum, P nw(k,z), computed from no-
wiggle formula of Eisenstein and Hu (1998). The error bars
indicate the standard errors of the estimated mean value [equa-
tion (5)]. To clarify the differences between the N -body results
and theoretical predictions, we also plot the residuals from RPT
in the right panel of figure 2.

Since large error bars at k . 0.1 h Mpc#1 are expected to
come mostly from the finite-volume effect, we next correct
this effect. In figure 3, we plot the power spectra, based on
the procedure in subsection 4.2, but we truncate the expansion
of equation (11) at the first term (left, the fractional difference
from the no-wiggle formula; right, residuals from RPT predic-
tion). The error bars become significantly smaller compared
with those in figure 2, because the finiteness effect is reduced
by our methodology. Nevertheless, the results of N -body
simulation still exhibit an error of a few percent, even after
the correction.

Next, we include the second term of equation (11) which
comes from the mode couplings among finite modes for the
correction. Figure 4 shows the results for the fractional differ-
ence between the simulations and the no-wiggle formula (left),
and the residuals from RPT predictions (right). Now the size
of the error bars is further reduced to the subpercent level.

All of the theoretical predictions plotted in figure 4
and N -body simulations agree with each other well within
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Fig. 3. Same as figure 2, but we correct the effect of the finite volume. We truncate the expansion of equation (11) at the first term. The error bars show
equation (13).

Fig. 4. Same as figure 2, but we correct the effect of finite volume, including the second term of equation (11). We also show the 1% limit wavenumbers,
klim

1% , for LIN, SPT, and RPT/CLA by vertical arrows (from left to right).

a limitation of the error bars at large scales up to some
wavenumbers (we determine the range of convergence in
the next subsection). Among the four theoretical predic-
tions, linear theory deviates at the smallest wavenumber.
The range of the agreement in SPT is wider than in linear
theory, because SPT includes the leading-order contribution
of nonlinear growth. RPT and CLA seem to agree well
with N -body simulations compared with SPT, although all
of the three nonlinear models include their own leading-order
nonlinear corrections. This difference in the agreement ranges
corresponds to their different convergence properties; RPT and

CLA possess the property of converging at the scales where the
nonlinearity is very weak.
5.2. Convergence Regime in Wavenumber

We are now able to quantitatively estimate the convergence
regime of wavenumbers where the theories and N -body simu-
lations agree. We define two characteristic wavenumbers, klim

1%

and klim
3% , such that the results of N -body simulations and theo-

retical predictions agree within a limitation of 1% at k < klim
1%

and within a limitation of 3% at k < klim
3% . We confirmed that if

we add 1% (3%) Gaussian errors on the power spectra binned
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Anisotropy	  at	  large	  scales	  can	  be	  corrected	  
	  
	  	  

Correc2on	  at	  2nd	  order	  	  Nishimichi	  et	  al.	  2009,	  PASJ	  61,	  321	  
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ABSTRACT
We present and test a method that dramatically reduces variance arising from the sparse sam-
pling of wavemodes in cosmological simulations. The method uses two simulations which are
fixed (the initial Fourier mode amplitudes are fixed to the ensemble average power spectrum) and
paired (with initial modes exactly out of phase). We measure the power spectrum, monopole and
quadrupole redshift-space correlation functions, halo mass function and reduced bispectrum at
z = 1. By these measures, predictions from a fixed pair can be as precise on non-linear scales as
an average over 50 traditional simulations. The fixing procedure introduces a non-Gaussian cor-
rection to the initial conditions; we give an analytic argument showing why the simulations are still
able to predict the mean properties of the Gaussian ensemble. We anticipate that the method will
drive down the computational time requirements for accurate large-scale explorations of galaxy
bias and clustering statistics, enabling more precise comparisons with theoretical models, and
facilitating the use of numerical simulations in cosmological data interpretation.

Key words: N-body simulations, large-scale structure of the Universe

1 INTRODUCTION

Numerical simulations are an essential tool for cosmology, especially
for interpreting observational surveys (see Kuhlen et al. 2012 for a
review). They can be deployed to probe the impact of a given cosmo-
logical ingredient (e.g. Baldi et al. 2014), create virtual galaxy pop-
ulations (e.g. Overzier et al. 2009), check and develop analytic treat-
ments for structure formation (e.g. Carlson et al. 2009), and under-
stand systematic and statistical errors in cosmological measurements
(e.g. Manera et al. 2015). In the future, simulations could even be
used to constrain cosmological parameters (Angulo & Hilbert 2015).

However, a limitation for all the above applications is the sparse
sampling of Fourier modes due to the finite extent of the simulation
box. A given cosmological simulation is initialised to a particular re-
alisation of a Gaussian random field. The power spectrum of the real-
isation, P̂L(k), therefore differs from the ensemble mean power spec-
trum, PL(k). Given a box large enough to capture all physical effects
(Bagla et al. 2009), the largest-scale modes are still poorly sampled.
This, together with the non-linear coupling of small and large scales,
implies that several-Gpc size boxes generate statistical errors which
limit inferences on 100 or even 10 Mpc scales.

This under-sampling effect is closely connected to (though, ow-
ing to the non-linear evolution, not precisely the same as) observa-
tional cosmic variance. In the observational case, the finite volume
that can be achieved by a given survey constitutes an irreducible
source of uncertainty. On the other hand the computational variance
can be strongly suppressed, at least in principle, until it is smaller
than the cosmic variance and other sources of error. This is usually

∗ rangulo@cefca.es
† a.pontzen@ucl.ac.uk

achieved by simulating huge cosmological volumes (e.g. Rasera et al.
2014) or a large number of realisations (e.g. Takahashi et al. 2009).
Finite computing resources then generate a tension between the need
for large volumes and for high resolution (the latter is required to bet-
ter resolve the distribution of individual galaxies and their internal
structure). Even as supercomputing facilities expand, the tension is
becoming more acute as surveys probe larger scales and constrain the
statistics of fluctuations to greater precision. For instance, reaching
1% accuracy over the whole range of scales to be probed by Euclid
would require the simulation of ∼ 105 Gpc3.

In this Letterwe propose and test a method to suppress the effect
of box variance drastically. We will show that with just two simula-
tions we can achieve the accuracy delivered by tens to hundreds of
traditional simulations at the same scale, depending on the particular
problem in hand. Briefly, the two simulations:

(i) use a fixed input power spectrum, meaning that we enforce
P̂L = PL when generating the initial conditions;

(ii) are paired, so that a hierarchy of effects due to chance phase
correlations can be cancelled (Pontzen et al. 2015).

The first condition destroys the statistical Gaussianity of the in-
put field which, at first sight, would seem to limit the usefulness of
the approach. However we will demonstrate empirically and analyt-
ically that, by all measures explored here, the non-Gaussian correc-
tions have a negligible effect on ensemble mean clustering statistics.

This Letter is set out as follows. In Section 2 we implement and
test our method. In particular, we quantify its performance by com-
paring predictions with those from an ensemble of 300 independent
simulations. We develop an analytic understanding of why the method
works in Section 3. Finally, in Section 4 we present our conclusions.

c© 2016 RAS

Reducing	  sampling	  variance	  by	  fixing	  the	  modulus	  of	  the	  fourier	  mode	  while	  
keeping	  its	  phase	  random.	  	  False	  good	  idea	  or	  quite	  handy	  ?	  
	  

In	  my	  opinion	  :	  
-‐  Seems	  hazardous	  as	  the	  ini2al	  condi2ons	  are	  actually	  non	  Gaussian	  even	  though	  a	  	  

pairing	  technique	  is	  used	  to	  reduce	  this	  effect	  	  
-‐  Does	  not	  reduce	  other	  finite	  box	  effects	  e.g.	  anisotropy	  induced	  by	  discrete	  

sampling	  of	  k	  space	  
-‐  Perturba2on	  theory	  can	  poten2ally	  be	  tested	  by	  taking	  into	  account	  the	  noise	  e.g.	  

on	  the	  effec2ve	  noisy	  power-‐spectrum	  	  
-‐  Cosmic	  variance	  remains	  useful	  to	  have	  for	  mock	  catalogs	  

Angulo	  &	  Pontzen	  2016,	  arXiv:1603.05253	  

Fixing	  large	  sampling	  
variance	  at	  small	  k	  
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Figure 4. Same as Fig. 3 but for ZA zi = 24 initial conditions. The solid lines

show the predictions of the expected transient behaviour in S3, equation (26),

and S4, equation (27).

Figure 5. Same as Fig. 3 but for ZA zi = 49 initial conditions. The solid lines

show the predictions of the expected transient behaviour in S3, equation (26),

and S4, equation (27).

equation (26) for the skewness (bottom panels) and equation (27)

for the kurtosis (top panels). From this, we conclude that the simu-

lations started with ZA initial conditions have transients which are

well understood at large scales from first principles. Figs 4 and 5

check the PT transients predictions more accurately than done be-

fore (Scoccimarro 1998). We now discuss how these effects impact

on clustering at small scales.

4.2 Power spectrum

The power spectrum is the most widely used statistic. Non-linear

corrections to the power spectrum are controlled by the same non-

linear couplings that determine higher-order statistics at large scales,

Figure 6. Power spectrum for different initial conditions (2LPT zi = 11.5,

ZA zi = 49 and ZA zi = 24, from top to bottom in each panel) compared

to the reference runs at z = 0 (top), z = 1 (middle) and z = 3 (bottom). The

dotted lines show an estimate of the transients for ZA zi = 49 and ZA zi =
24 from one-loop PT.

and thus we expect to see transient behaviour in the non-linear power

spectrum as well.

Fig. 6 shows that this is indeed the case. First, in each panel the top

line denotes the 2LPT zi = 11.5 initial conditions runs, showing that

in the 2LPT case there is almost no transient behaviour, as expected

from the results on the Sp parameters at large scales. On the other

hand, the ZA initial conditions runs show significant transient ef-

fects, up to 10 per cent at z = 3, which can potentially lead to serious

systematic errors for precision studies of the high-redshift Universe.

For example, a ZA start at zi = 30 was used for the Lambda cold

dark matter simulation from which the latest fitting formula for the

non-linear power spectrum (Smith et al. 2003) was derived. Our ref-

erence runs show a power spectrum for k ! 2 h Mpc−1 that is as much

as 7 per cent higher at z = 0 and as much as 13 per cent higher at z =
3 when compared to the Smith et al. (2003) fitting formula. These

deviations are in reasonable agreement with the expectations based

on Fig. 6. A detailed comparison of the non-linear power spectrum

in our simulations to fitting formulae, one-loop PT and renormal-

ized PT (Crocce & Scoccimarro 2006) will be discussed elsewhere.

It is also important to note that a relatively high-redshift ZA start

such as zi = 149, which we ran as a test, leads only to mild im-

provements compared to ZA zi = 49 in Fig. 6, i.e. the suppression

in the non-linear regime is still of the order of 1 per cent, consistent

with the a−1 slow scaling of transients in the ZA. We have checked

that these results do not depend on the accuracy of the force, time

integration, and softening. For example, using the HQ runs (see

Table 1) for zi = 49 we obtain very similar results to those in Fig. 6,

specifically within about 0.04 per cent for z = 0, 1 and 0.02 per cent

for z = 3. Also, as shown in Fig. 6, the magnitude of the measured

transients in the ZA zi = 49 and ZA zi = 24 runs are in reasonable

agreement with their estimation by one-loop PT using the kernels

in equation (15), particularly at high redshift where the agreement

should be best.

Fig. 7 presents results in redshift space for the ZA zi = 49 ini-

tial conditions runs. The combined effect of density and velocity

transients leads to non-trivial behaviour. As shown by Scoccimarro

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 373, 369–381
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Figure 7. Redshift-space power spectrum for ZA zi = 49 initial conditions

compared to the reference runs at z = 0 (top), z = 1 (middle) and z = 3 (bot-

tom). In each panel, we show modes parallel to the line of sight (triangles),

monopole (circles) and modes perpendicular to the line of sight (squares).

(1998), transients in the velocity field are larger than in the density

field. For modes parallel to the line of sight (triangles in each of the

panels in Fig. 7), small-scale velocities suppress power due to ve-

locity dispersion. Therefore, although transients in real space make

the power smaller, when mapped into redshift space with velocities

that are even more suppressed by transients than the density, the

overall effect is to increase the power spectrum along the line of

sight compared to the reference runs that have no transients. Since

there is cancellation between density and velocity transients, the

overall effect is somewhat weaker than in the real space power.

For modes perpendicular to the line of sight, on the other hand,

the effect is opposite since these modes are unaffected by redshift-

space distortions and show the same suppression in power seen in

Fig. 6. This means that when the redshift-space power spectrum

is averaged over angles with respect to the line of sight to obtain

the monopole, these opposite behaviours lead to cancellation that

makes the monopole less sensitive to transients (see circles in Fig. 7).

However, the anisotropy of the redshift-space power spectrum is

affected by transients much more than the monopole.

4.3 Bispectrum

The bispectrum is also affected by transients, and from equa-

tions (17) and (22) we see that at the largest scales where second-

order Eulerian PT holds it should be affected most for triangles that

are most different from elongated triangles (which correspond to

x = 1 and show no transient behaviour). Fig. 8 shows the bispectrum

at z = 0 for different initial conditions divided by that in the reference

runs for triangles with k1 = 0.12 h Mpc−1 and k2 = 2k1 as a function

of the angle θ between k1 and k2. From this, we see again that the

2LPT zi = 11.5 initial conditions show very little (! 0.2 per cent)

transient effects, whereas the ZA initial conditions runs show the ex-

pected transient signature, minimal at elongated triangles and max-

imal at isosceles triangles. These can lead to systematic errors in the

determination of bias and cosmological parameters, given present

expected observational errors (Sefusatti et al. 2005).

Figure 8. Bispectrum for different initial conditions (2LPT zi = 11.5, ZA

zi = 49 and ZA zi = 24, from top to bottom) compared to the reference runs

at z = 0. The symbols shown correspond to k1 = 0.12 h Mpc−1, k2 = 2k1

with θ the angle between k1 and k2.

Figure 9. The PDF of the density contrast δ in units of rms value, σ ≡
〈δ2〉1/2, for our reference run (2LPT zi = 49) and ZA zi = 24 initial condi-

tions.

4.4 The PDF

The suppression of higher-order moments by transients means that

the PDF of density fluctuations is also affected. Fig. 9 shows a

comparison of the PDF of our reference run (2LPT zi = 49) and

ZA zi = 24 initial conditions at redshift z = 3 for a smoothing scale

R = 10.84 h−1 Mpc. Note that how the non-Gaussian features of the

PDF are changed by transients: the right tail is suppressed, whereas

the left cut-off is enhanced, leading to smaller skewness. Fig. 10

shows the ratio of the PDF for different initial conditions to that of

the reference run, to better appreciate the differences. Although the

differences at the left tail are more significant, the PDF is falling
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