
High	
  precision	
  simula1ons	
  for	
  high	
  precision	
  cosmology:	
  
a	
  discussion	
  about	
  (un?)controlled	
  numerical	
  experiments	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Stéphane	
  Colombi	
  	
  
Ins2tut	
  d’Astrophysique	
  de	
  Paris	
  



	
  
	
  
-­‐  Why	
  do	
  we	
  use	
  cosmological	
  simula2ons	
  ?	
  
-­‐  What	
  is	
  the	
  physical	
  problem	
  to	
  treat?	
  
-­‐  Dark	
  maCer	
  simula2ons	
  techniques	
  (true	
  simula2ons,	
  I	
  mean)	
  
-­‐  Limits	
  of	
  N-­‐body	
  simula2ons	
  
-­‐  Perspec2ves	
  (adver2sement)	
  

Plan	
  



Why	
  do	
  we	
  use	
  (N-­‐body)	
  simula1ons	
  ?	
  
	
  
To	
  solve	
  the	
  dynamics	
  of	
  a	
  physical	
  system	
  for	
  which	
  there	
  is	
  no	
  
analy2cal	
  solu2on	
  
	
  
In	
  prac1ce:	
  
	
  
-­‐  To	
  understand	
  the	
  dynamics	
  of	
  a	
  vey	
  complex	
  system,	
  e.g.	
  a	
  
dark	
  maCer	
  halo	
  (hence	
  NFW)	
  or	
  a	
  galaxy	
  

-­‐  To	
  check	
  the	
  validity	
  of	
  some	
  approxima2on,	
  e.g.	
  cosmological	
  
perturba2on	
  theory	
  at	
  large	
  scales	
  (BAOs)	
  or	
  some	
  
phenomenological	
  model,	
  e.g.	
  the	
  halo	
  model	
  

-­‐  To	
  generate	
  realis2c	
  mock	
  observa2ons,	
  e.g.	
  a	
  mock	
  galaxy	
  
catalogue	
  



Example: old plot of the power spectrum of the large scale galaxy distribution 

hCp://www.hep.upenn.edu/~max	
  
	
  

Concordance  
model 

Regime 
accessible 
only thanks 
to simulations 
(however we 
have some 
recipes, e.g. the 
halo model) 

Linear regime 
* 

Baryon acoustic 
oscillation: 
higher order PT 
regime 



Dark matter : Vlasov 

Gas : Euler equations 

Equation of state 

Poisson equation 

+	
  the	
  ugly	
  physics	
  I	
  wont	
  discuss	
  much	
  except	
  to	
  feel	
  sorry	
  for	
  
myself	
  with	
  e.g.	
  my	
  beau2ful	
  10th	
  order	
  PT	
  results:	
  gas	
  hea2ng/
cooling	
  processes,	
  star	
  forma2on,	
  feedback,	
  etc	
  

What	
  is	
  the	
  physical	
  problem	
  to	
  treat?	
  



``Supercomoving’’ coordinates:  
The equations remain nearly unchanged  
(Martel & Shapiro 1998, MNRAS 297, 467) 

Note	
  on	
  how	
  to	
  take	
  into	
  account	
  of	
  the	
  expansion	
  of	
  the	
  
Universe	
  in	
  the	
  previous	
  equa1ons	
  



3	
  approaches	
  to	
  simulate	
  the	
  Universe	
  
	
  
1)  try	
  to	
  do	
  everything	
  including	
  the	
  treatment	
  of	
  the	
  ugly	
  

physics	
  of	
  the	
  baryons	
  in	
  the	
  simula2ons:	
  given	
  the	
  complexity	
  
of	
  all	
  the	
  processes	
  at	
  game,	
  it	
  is	
  not	
  yet	
  possible	
  to	
  simulate	
  a	
  
large	
  volume	
  of	
  the	
  Universe	
  

2)  forget	
  about	
  the	
  baryons	
  and	
  simulate	
  only	
  dark	
  maCer	
  which	
  
follows	
  ``only’’	
  Vlasov-­‐Poisson	
  equa2ons:	
  	
  handy	
  to	
  test	
  	
  
perturba9on	
  theory	
  predic9ons,	
  possible	
  to	
  generate	
  very	
  big	
  
samples	
  

3)  Feel	
  guilty	
  about	
  2)	
  and	
  try	
  to	
  ``paint’’	
  dark	
  maCer	
  simula2ons	
  
by	
  taking	
  into	
  account	
  in	
  the	
  best	
  way	
  possible	
  the	
  ugly	
  
physics,	
  e.g.	
  	
  
	
  a)	
  semi-­‐analy9cal	
  models	
  
	
  b)	
  probabilis9c	
  approach	
  using	
  cross-­‐correla9ons	
  between	
  hydro	
  
	
  simula9ons	
  and	
  dark	
  ma>er	
  simula9ons.	
  	
  



Dark	
  maHer	
  simula1ons	
  techniques	
  
Bertschinger,	
  1998,	
  ARA&A	
  36,	
  599	
  
Colombi,	
  	
  2001	
  NewAR	
  45,	
  373	
  
Dolag et al., 2008, Space Science Review 134, 229	
  	
  	
  

	
  
	
  

Dark matter: modelled with 
(macro-)particles which form an 
Hamiltonian system 

Collisionless dark matter or stars in a galaxy: incompressible fluid in 
phase-space (x,u). Direct modeling in phase-space: 6 dimensions ! 

The modeling in terms of macro-particles induces N-body relaxation effects 
due to particle-particle collisions 

A softening parameter ε is needed at small scales: each dark 
matter particle is a ``cloud’’ of typical (possibly varying) size ε or, 
equivalently, the force is softened at scales smaller or of the order 
of ε 



Various	
  types	
  of	
  codes	
  
	
  

All	
  the	
  codes	
  basically	
  differ	
  by	
  the	
  way	
  Poisson	
  equa1on	
  is	
  solved	
  
	
  

1)  Brute	
  force	
  with	
  all	
  the	
  interac2ons	
  between	
  par2cles	
  calculated	
  
(PP)	
  

2)  	
  PM	
  code	
  :	
  the	
  ``plasma	
  physicist	
  approach’’	
  
	
  	
   CIC (cloud in cell) scheme •  density	
  is	
  calculated	
  on	
  a	
  grid	
  of	
  fixed	
  
resolu2on	
  by	
  projec2ng	
  the	
  par2cles	
  
with	
  some	
  interpola2on	
  procedure	
  e.g.	
  
CIC	
  or	
  higher	
  order	
  (TSC)	
   	
  	
  

•  Poisson	
  equa2on	
  is	
  simply	
  solved	
  with	
  
FFT	
  

•  Force	
  reinterpolated	
  on	
  each	
  par2cle	
  
with	
  dual	
  interpola2on	
  

•  Soeening	
  is	
  therefore	
  roughly	
  given	
  by	
  
cell	
  size.	
  	
  



3)	
  Treecode:	
  what	
  is	
  far	
  can	
  be	
  summarized	
  
	
  

Appel	
  1985,	
  SIAM	
  6,	
  85;	
  Barnes	
  &	
  HuC,	
  1986,	
  Nature	
  324,	
  446	
  	
  	
  	
  	
  	
  
GADGET1	
  :	
  Springel	
  et	
  al.	
  2001,	
  NewA	
  6,	
  79	
  	
  	
  	
  	
  	
  
	
  	
  

	
  	
  
Classical	
  implementa2on:	
  
•  Hierarchical	
  division	
  of	
  

space	
  on	
  an	
  ``oct	
  tree’’,	
  
un2l	
  there	
  is	
  only	
  one	
  or	
  
zero	
  par2cle	
  per	
  box.	
  

•  A	
  box=a	
  macro-­‐par2cle	
  if	
  
d/D	
  <	
  θ,	
  otherwise	
  the	
  
box	
  is	
  divided	
  in	
  8	
  
subboxes	
  and	
  so	
  on.	
  

	
  

d 

D 

A``quad tree’’  
Salmon & Warren 1994, Int. J. Supercomputer Applic. 8, 129 



	
  
• 	
  P3M	
  :	
  PP	
  +	
  PM.	
  The	
  PM	
  force	
  is	
  supplemented	
  with	
  a	
  small	
  scale	
  
contribu2on	
  by	
  direct	
  local	
  summa2on	
  
	
  
• 	
  treePM	
  :	
  same	
  as	
  P3M	
  but	
  with	
  a	
  local	
  treecode	
  to	
  augment	
  the	
  
resolu2on:	
  faster	
  ?	
  	
  
	
  
• 	
  AMR	
  :	
  local	
  refinement	
  of	
  the	
  PM	
  grid.	
  2	
  methods:	
  “patch	
  
method”	
  (hierarchy	
  of	
  embedded	
  rectangular	
  grids)	
  or	
  ART	
  
(adap2ve	
  refinement	
  tree).	
  Note	
  :	
  AP3M	
  :	
  P3M	
  code	
  with	
  grid	
  
refinement.	
  
	
  
• 	
  Lagrangian	
  approach	
  :	
  the	
  PM	
  grid	
  changes	
  shape	
  according	
  to	
  the	
  
flow	
  
	
  

3)	
  Hybrid	
  methods:	
  
	
  	
  

	
  	
  

Hockney & Eastwood, 1981; Efstathiou et al. 1985, ApJS 57, 241 

Bagla, 2002, JApA 23, 185      GADGET2: Springel 2005, MNRAS 364, 1105 

Kravtsov et al. 1997, ApJS 111, 73     RAMSES: Teyssier 2002, A&A 385, 337 

Gnedin, 1995, ApJS 97, 231; Pen, 1995, ApJS 100, 269 



``Lagrangian’’	
  approach	
  

Pen	
  1995	
  



Possibly	
  annoying	
  features	
  in	
  each	
  techniques	
  

-­‐  Brute	
  force	
  :	
  well	
  forget	
  about	
  it,	
  way	
  too	
  costly	
  
	
  

-­‐  PM	
  :	
  cheap,	
  can	
  provide	
  robust	
  results	
  if	
  used	
  wisely	
  but	
  low	
  
spa2al	
  resolu2on.	
  Probably	
  the	
  best	
  tool	
  to	
  test	
  PT	
  predic2ons	
  if	
  
not	
  trying	
  to	
  model	
  biasing	
  

-­‐  Treecode	
  :	
  problem	
  with	
  force	
  error	
  calcula2ons:	
  impossible	
  to	
  
start	
  simula2ons	
  at	
  very	
  high	
  redshie	
  

-­‐  AMR	
  :	
  problem	
  with	
  varying	
  soeening:	
  symplec2city	
  is	
  broken:	
  can	
  
this	
  be	
  an	
  issue,	
  some2mes?	
  Need	
  more	
  par2cles	
  than	
  treecode	
  to	
  
have	
  same	
  effec2ve	
  mass	
  resolu2on	
  (in	
  terms	
  of	
  DM	
  halos	
  mass	
  
func2on)	
  

-­‐  P3M	
  :	
  small	
  forces	
  errors	
  at	
  the	
  transi2on	
  between	
  PP	
  and	
  PM	
  
regime	
  	
  

-­‐  treePM	
  :	
  same	
  issue	
  as	
  treecode,	
  but	
  certainly	
  to	
  a	
  much	
  lesser	
  
extent,	
  same	
  issue	
  as	
  P3M	
  

Limits	
  of	
  N-­‐body	
  simula1ons	
  



Finite	
  volume	
  effects:	
  
Non	
  linear	
  couplings	
  	
  
l0(t)	
  	
  <	
  L/10	
  –	
  L/20	
  

N-­‐body	
  relaxa2on	
  
l0(t)	
  >>	
  λp=L/N1/3	
  

Transcients	
  
a(t)/a(ti)	
  >>	
  1	
  

Finite	
  volume	
  effects:	
  
Sta2s2cal	
  bias	
  

l	
  	
  <	
  L/10	
  –	
  L/20	
  

Force	
  resolu2on:	
  
l	
  	
  >	
  a	
  few	
  ε	
  

Resolu2on	
  λe	
  of	
  the	
  
Eulerian	
  sampling	
  grid	
  

l	
  >	
  a	
  few	
  λe	
  

Mass	
  resolu2on	
  
M/m	
  >	
  10-­‐100	
  

N-­‐body	
  relaxa2on	
  	
  
M/m	
  >>	
  1	
  

Finite	
  volume	
  effects:	
  
rare	
  events	
  
M/m	
  <<	
  Nmax	
  

	
   	
  
AV

AI
LA
BL
E	
  
DY

N
AM

IC
AL
	
  R
AN

GE
	
  

	
   	
  2m
e	
  

Scale	
  l or	
  mass	
  M	
  



Par1cularly	
  annoying	
  issues:	
  
	
  
Anisotropic	
  growth	
  of	
  fluctua1ons	
  
•  	
  Discreteness	
  effects:	
  memory	
  of	
  the	
  ini2al	
  par2cle	
  paCern	
  :	
  see	
  e.g.	
  

Marcos	
  et	
  al.	
  2006,	
  PRD	
  73,	
  103507;	
  Joyce	
  &	
  Marcos	
  2007	
  PRD	
  10,	
  103505	
  
for	
  the	
  grid	
  

=>	
  The	
  correla2on	
  length	
  must	
  be	
  sufficiently	
  large	
  compared	
  to	
  the	
  mean	
  
interpar2cle	
  distance	
  to	
  allow	
  for	
  sufficient	
  mixing	
  
	
  
•  Finite	
  box	
  size	
  effects:	
  wrong	
  mode	
  coupling	
  at	
  large	
  scales:	
  see	
  e.g.	
  Seto	
  

1999,	
  ApJ	
  523,	
  24;	
  Takahashi	
  et	
  al.,	
  2008,	
  MNRAS	
  389,	
  1675;	
  Nishimichi	
  et	
  
al.	
  2009,	
  PASJ	
  61,	
  321	
  

=>	
  Need	
  the	
  box	
  size	
  to	
  be	
  (very)	
  large	
  compared	
  to	
  the	
  correla2on	
  length	
  
	
  
Other	
  transcients	
  due	
  to	
  to	
  Zel’dovich	
  approxima1on	
  
see	
  e.g.	
  Crocce	
  et	
  al.	
  2006,	
  MNRAS	
  373,	
  369	
  
=>	
  must	
  start	
  at	
  very	
  high	
  z	
  or	
  ini2al	
  condi2ons	
  must	
  be	
  generated	
  at	
  higher	
  
order	
  (2nd	
  order)	
  
	
  



108 CHAPITRE 5. LES ÉQUATIONS DE VLASOV-POISSON : APPROCHE NUMÉRIQUE

Figure 5.10, suite, à t = 100. On note dans le panneau en bas à droite la présence d’une zone chaotique due au
bruit blanc des particules. Augmenter le nombre de particules retarde l’apparition de cette instabilité numérique,
qui ne devrait se manifester que sur le plan microscopique et après de nombreux temps dynamiques.
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N-­‐body	
  simula1ons	
  are	
  noisy	
  
	
  

Example:	
  phase-­‐space	
  of	
  a	
  1D	
  simula2on	
  with	
  Gaussian	
  ini2al	
  condi2ons	
  

“Exact”	
  solu2on	
  with	
  the	
  Waterbag	
  method	
  
Colombi	
  &	
  Touma	
  (2008,	
  2014)	
  

N-­‐body	
  

holes	
  

Suspect	
  resonance	
  

Nice	
  «	
  Landau	
  damping	
  »	
  



Vlasov versus N-body: the Hénon sphere 3731

Figure 4. Same as in Fig. 2, but for a colder initial configuration with virial ratio R = 0.1. There is also an additional line of panels corresponding to the
GADGET simulation with N = 108 particles. Note the large R tail escaping from the system, corresponding to a fraction of the mass with positive energy (see e.g.
van Albada 1982; Joyce et al. 2009; Sylos Labini 2012).

it is difficult at this point to know if actual physical instabilities
build up at late times in the R = 0.1 case, because diffusion in the
Vlasov simulation might prevent the appearance of some unstable
modes.

While the irregular patterns observed in Figs 4 and 5 are defi-
nitely of numerical nature, the fact that they develop so easily may
indicate that the system is prone to react non-linearly to small per-
turbations. Uneven gaps between the filaments of the phase-space
density can be observed at t = 15 (third column of Fig. 4), even
in the (1024, 1024, 512) Vlasov simulation, and one might ex-

pect that they correspond to seeds of actual physical instabilities.
In this respect, the system might actually develop, at some point,
physical unstable modes. These results are quite suggestive of what
was obtained previously with a spherical shell code for cold and
self-similar systems (Henriksen & Widrow 1997).

Even with our N = 108 particle simulation, it is not clear
whether these unstable modes dominate over collective effects
due to discreteness. A better understanding of the phenomenon
would require a convergence study using even higher-resolution
simulations.

MNRAS 450, 3724–3741 (2015)
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Spherical	
  collapse	
  of	
  a	
  Hénon	
  sphere:	
  Vlasov	
  code	
  versus	
  N-­‐body:	
  collec1ve	
  shot	
  noise	
  effects	
  
Phase	
  space	
  for	
  a	
  slice	
  of	
  fixed	
  angular	
  momentum	
  

Vlasov	
  

N=108	
  

N=107	
  

N=106	
  



coordinate axes so that no collisions were possible. Obviously,
a collisionless system with only one-dimensional perturbations
should remain one-dimensional. This fact is the basis of our
test; its violation means the code is collisional or that it
otherwise erroneously scatters particle orbits.

We made the test more relevant by tilting the plane of
collapse relative to the simulation cube. We set up a single
perturbation wave k 5 (2, 3, 5)kf(uku 5 6.16kf , where kf is the
fundamental mode) by Fourier transform on a grid of 643

particles. We began with an amplitude d [ (r 2 r̄)/r̄ 1 0.1 and
evolved for an expansion factor of 7.7 after the first shell
crossing, during which collisions are permitted by theory.
While the physical system should have no scattering, near
misses may generate scattering numerically. The role of the
symmetry simply makes scattering detectable. To perform the
comparison we used a PM code (Melott 1981, 1986), a P3M
code (kindly supplied by H. Couchman), and a Tree code
(Suginohara et al. 1991). We also tested a nested-grid particle-
mesh (NGPM) code (Splinter 1996). All runs had identical
(publicly available) initial conditions. The initial conditions for
the NGPM code were generated in the manner described
above for both the coarse and the fine grid. We also made
cross-check runs in which the perturbation k 5 (0, 0, 6)kf was
not tilted with respect to the cube.

The PM run was performed on a 643 mesh and duplicated on
a 1283 mesh to emulate a modification sometimes used, as well
as to verify the code independence of our results. PM tests
were made using traditional two-point differencing and the
Melott (1986) improved–force-resolution staggered-mesh
scheme. There was no significant difference in scattering, as we
report here. We performed otherwise identical P3M and Tree
tolerance parameter u 5 0.2 runs with e 5 0.1 and 1.0, as well
as a transitional P3M run with e 5 0.5. In the P3M code, we
used two choices of time-integration variable and varied the
time step greatly, assuring satisfaction of both Courant and
leapfrog stability conditions. The PM and NGPM codes
automatically test and adjust time steps as needed. The
adaptive smoothing length capability of the P3M code was
turned off, as suggested by Gelb & Bertschinger (1994). The
NGPM code had a refinement factor of 8, putting it close in
spatial resolution to the e 5 0.1 P3M run, but with 512 times
increased mass resolution (making it an HFHMR code).
Results of a much more extended study will be presented
elsewhere.

Figure 1 shows the overall configuration of the PM system
after collapse. All runs look roughly similar. Differences
between tilted runs are shown in Figure 2, in which slices of
one collapsed planar region are projected along the initial
perturbation axis. The only inhomogeneity should be projec-
tion of the initial lattice onto this plane. Some runs show
clumping, suggesting scattering error. All the erroneous
HFLMR runs (the P3M and Tree code runs with e , 1, and the
1283 mesh PM run) share softening lengths shorter than the
mean interparticle separation. The runs that performed well
(normal PM, P3M and Tree with e 5 1, and NGPM) all have
softening comparable to this distance; of course, for NGPM
this distance is considerably smaller, but at no collision
penalty. (Axis-aligned PM and P3M runs show the lattice, with
no clumping visible.)

We use as one quantitative measure the distribution of
particle velocities, which should be strictly normal to the
planes; we separate the velocities into components along the
normal and in the plane, Vplane 5 (V p1

2 1 V p2
2 )1/2. Figure 3 shows

scatter plots for 1000 randomly selected particles from each of
our runs. Many particles are hidden by superposition. The
correct result is a line along the Vnorm axis. This line is
approached only by nonsparse PM and NGPM, by P3M and
Tree as the short-range force is turned off, and by axis-aligned
runs that have only head-on collisions. With e 5 0.1, the most
common choice, the error is large.

The relative error can be made quantitative by comparing
the median speed in the plane to the median speed along the
normal, as shown in Table 1. Another measure is the kinetic
energy; the mean in the plane and along the normal are also
shown in Table 1. Lastly, we show the median value of dplane,
the distance in mesh units by which particles have strayed off
the normal trajectory. All values are the mean or median of
10,000 particles (subgrid particles in NGPM). Our axis-aligned
PM and P3M runs had zero off-normal velocity (within com-
puter precision).

Figure 4 shows a phase-space diagram of a single sheet,
including the normal displacement and velocity, with the other
four phase-space dimensions suppressed. The correct solution
is a spiral (Doroshkevich et al. 1980; Melott 1982a; Bond,
Szalay, & White 1983). The codes that preserve this pattern
are those with softening comparable to the mean interparticle
separation.

We can verify that scattering occurs from encounters, not
from the initial gravity fields, by noting that off-normal com-
ponents are small until shell crossing in all codes; they increase
strongly in the inclined HFLMR codes as particles pass each
other.

3. DISCUSSION

We have shown that HFLMR computational methods in
widespread use for gravitational clustering in cosmology per-
form incorrectly on a simple test problem because they try to
model a continuous system with discrete masses. The PM and
NGPM methods (as normally used) are able to handle this test
because there is no evasion of the discreteness limitation. PM

FIG. 1.—Configuration of particles at the end of our PM simulation. The
other simulations look much the same, except for more inhomogeneity in some
cases.
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can be forced to fail by increasing the lattice resolution beyond
appropriate limits. HFLMR methods work properly if the
short-range force is turned off or if they are forced to align
with the coordinate axes.

Since convergence to the proper behavior is very slow (e.g.,
Hockney 1971), past comparisons by varying particle number
have not revealed this problem (e.g., Efstathiou & Eastwood
1981). Coupling these incorrectly evolved systems to hydrody-
namics will guarantee that the simulation is done in the wrong
background gravitational potential. We do not claim that the
effect occurs on larger scales. Melott & Shandarin (1990), Little,
Weinberg, & Park (1991), and Melott & Shandarin (1993)
have shown that small-scale effects scarcely propagate to large
scales, but more quantitative study is needed. However, errors
would only stop growing in voids or in regions where the
particle density exceeds e23.

Questions may be raised about the relevance of our exam-
ple. Galaxies are not infinite planes. However, the first col-
lapse on any scale is expected to be sheetlike (Shandarin et al.
1995; Kuhlman et al. 1996; Gouda 1996), so there is ample
opportunity for our test situation to arise. Furthermore,
collisionality operates in the absence of symmetry; our planar
collapse study simply makes it starkly obvious. One may argue
that since collapsed pancakes are unstable to small-scale
perturbations, the HFLMR codes model them correctly, jus-

tifying the results they give for small e. On the other hand,
since there is no small-scale power in the initial conditions,
these codes are artificially producing power on small scales by
the growth of shot noise. The results of a simulation should be
a consequence of initial conditions that were imposed. This
point is illustrated in the orientation dependence of the
HFLMR codes. Since we get two completely different results
depending on orientation, one must ask which result is correct.
Most importantly, our results serve to raise the question of
whether a code performs well overall in a complex nonlinear
problem when it cannot replicate a simple test case. As this
Letter was going to press, the authors learned of the work of
Park (1997), in which spherical collapse is studied, producing
conclusions close to ours. Values e 5 0.01 or even smaller are
used in clustering studies.

One might hope that realistic cosmological scenarios with
power on all scales avoid this problem. Impressed perturba-
tions might overwhelm discreteness if the spectrum is normal-
ized to the shot-noise level at the particle Nyquist frequency
(Efstathiou et al. 1985). We tested this possibility by putting in
an inclined plane wave close to the particle Nyquist frequency
at the white-noise amplitude. Again we found strong scattering
in a e 5 0.1 P3M run and essentially none in PM. At this short
wavelength the resolution limitations of PM show themselves

FIG. 2.—A slice of one of the planes from each cube, seen projected along the normal to the plane. The dimensions of the slice are 16 3 16 3 4. To construct the
NGPM slice, a slice of size 4 3 4 3 1 was extracted from the subgrid particles and repeated periodically to produce a slice of size 16 3 16 3 4. This slice was then
sampled to reduce the number of particles to roughly that of the other runs. top row: PM with one particle per cell, PM with one particle per 8 cells (a common
“resolution-increasing” procedure), and NGPM (subgrid). Middle row: P3M with various values of e. Bottom row: Tree code with various values of e, and the correct
result, which was constructed by propagating particles along normals to the plane; the lines come from the tilted projection of the cubic lattice. This projection
represents the standard of comparison for all the codes except NGPM, which shows the correct appearance.
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Figure 3. Snapshots of a slice of the system for the different ICs (BCC, top left; FCC, top right; SC, bottom right; glass, bottom left) at a = 1 (upper four
panels) and a = 23 (bottom four panels).
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VP limit are different from the two effects envisaged usually which
we listed above. First, they are dynamical effects which modify
the evolution of any given mode in a way which is independent
of the initial conditions. Secondly, they are clearly not two-body
collisional effects.21 The effect they describe can be characterized
physically as a dynamical sparse sampling effect: PLT compared
with its VP limit tells us how the evolution of a fluctuation de-
pends on the spatial density of the sampling particles. An important
question is then evidently to understand how this physical effect –
which there is no reason to believe should go away when we pass
to the non-linear regime – quantitatively affects results in the latter
regime. We will return to this point in our conclusions.

3 A C A L I B R AT E D N U M E R I C A L S T U DY
OF DISC RETENESS EFFECTS

We return now to the practical question of how small ! needs to be
for a measured quantity to have converged to a desired precision.
Since the force smoothing ε places a lower bound on the spatial
resolution, a simplified, more specific, form of the question is: how
small does ! have to be in order that, at any given redshift, the
effects of discreteness are negligible down to scales of order ε?
The answer provided by the ‘common wisdom’ above is that ! is
sufficiently small, in typical simulations, if !/ε is less than about
100 (see e.g. Knebe et al. 2000). According to the ‘dissenting views’
! must be at least as small as ε.

One way of determining, in principle, which view is correct is
evidently to compare results from simulations with large !1/ε in
the range !1 > r > ε with those obtained in much higher resolution
simulations, with !2 ≤ ε " !1. This is indeed the strategy advocated
in Splinter et al. (1998), which reports a study of this type down to a
resolution !2 = ε. It concludes, as noted above, that there are signif-
icant differences in results, i.e. no evidence for convergence, in the
range !1 > r > !2. Other authors (Knebe et al. 2000) argue, however,
that these differences are ascribable to ‘erroneous evolution in HR
runs’. The difficulty in reaching a convincing conclusion is that the
questions of discreteness effects are intertwined with numerical and
finite size effects. While such differences should be resolvable by
further numerical tests, this would require considerable investment
of resources which, apparently because of the wide acceptance of
the ‘common wisdom’, has not been made.22

Instead of undertaking such a numerical study – which, given the
modest numerical resources at our disposition, would not in any
case likely to be any more conclusive than that reported by Splinter
et al. (1998) – we focus in the rest of this paper on another kind
of test. We will see that this will allow us to reach conclusions,
with modest-sized (but very well numerically converged) simula-
tions, about the central issue: the validity/precision of results in the
range of scales around or below !, in simulations with ! # ε. The
aim is to provide a method which gives a non-trivial lower bound
on discreteness error in such simulations. To do so, we simply
compare the results of simulations from identical theoretical initial
conditions, changing only the choice of the discreteness parameter
preIC, i.e. the pre-initial configuration. We can then study how this
error depends on time and scale. Although the measured effects

21 To make this very explicit, we have shown in Joyce & Marcos (2007a) that
the inclusion of a simple Plummer smoothing in the force actually increases
the difference between PLT and the VP limit for unsmoothed gravity.
22 See, however, the recent paper by Romeo et al. (2008a), which we will
comment on in our conclusions.

are quite small – at the most of the order of 5 per cent in the PS
for the times and scales relevant to cosmological simulations – we
can clearly establish, using the analytical PLT formalism combined
with numerical tests of their dependence on ! and ε, that they are
indeed discreteness effects. We can then address in a controlled way
the question of how far ! needs to be extrapolated so that one can
be confident that the true systematic errors due to discreteness have
converged to significantly less than this lower bound (e.g. to less than
1 per cent).

Rather than considering a specific cosmological model, we con-
sider a simple power-law PS with exponent n = −2, evolved in an
EdS universe. This choice is both suitable for our study as it is simple
– introducing no characteristic scale in the input model – and close
to the currently favoured CDM-like cosmological model, which has
an initial PS with effective exponent ranging between n ≈ −1 and
≈ −3 over the relevant range of scales. In particular, we note that
this PS is, like these cosmological models, long-wavelength domi-
nated so that the very efficient transfer of power from long to short
wavelengths which, as we have discussed above, is believed to play
a role in wiping out discreteness effects, should be well represented.
We will comment further in our conclusions on the generalization
to other initial conditions, and specifically to those of currently
favoured cosmological models.

All our simulations have been performed using the publically
available parallel tree-mesh code GADGET2 (Springel, Yoshida &
White 2001). We use this single (widely used and highly tested) code
for our study for the reasons we discussed above: the discreteness
effects we are trying to understand and control for are distinct
from differences arising between different codes, and indeed distinct
from any dependence of results on the numerical parameters of
a given code. The ‘calibration’ of our results with our analytic
tools here provides in fact a robust check that the GADGET2 code’s
integration of the N-body equations of motion is sufficiently precise
that this is indeed the case. Comparison with other codes would
be, in the relevant regime, a check on the accuracy of these codes,
rather than a check on our results. In the regime where our analytic
results do not apply, we can have, of course, less confidence in
the identification of our measured effects as physical discreteness
effects, and a comparison with other codes could be instructive. We
will address this issue below, where we give details of the detailed
checks of numerical convergence of our results which we have
performed using GADGET2.

3.1 Initial conditions

We use the standard method, based on the Zeldovich approximation,
to set up initial conditions by applying appropriate displacements
to four different preIC: a SC lattice, a BCC lattice, a FCC lattice
and a glass configuration, shown in Fig. 1.

Our reference set of simulations, which we denote as S1, have the
number of particles shown in Table 1. The numbers for the BCC and

Figure 1. From left- to right-hand side: unit cell of the SC, BCC and FCC
lattices.
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Figure 3. Snapshots of a slice of the system for the different ICs (BCC, top left; FCC, top right; SC, bottom right; glass, bottom left) at a = 1 (upper four
panels) and a = 23 (bottom four panels).
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FIG. 4: Discreteness factor Dδρ(k, t) quantifying the modifi-
cation with respect to the fluid limit (Dδρ(k, t) = 1) of the
power in the mode k of the evolved density fluctuation field,
for k in the FBZ. The plot is given, as for Fig. 2, at a = 5
(for a simulation starting at a = 1), for a 163 simple cubic
lattice. Also shown is a curve corresponding to the same quan-
tity averaged over all k with k in one of bins of equal width
∆k = 0.03kN , for a 643 simple cubic lattice. (The points
of this 643 calculation, which are not shown, just trace more
densely the behaviour of the points shown.)

where, using the definitions given above, we have

|k̂ ·E(k, t)|2 =

[

3
∑

n=1

[Un(k, t) +
2

3t0
Vn(k, t)](ên · k̂)2

]2

(46)
instead of the expression in Eq. (34) for the analogous
quantity for the PS of the displacement fields.

In Fig. 4 is shown Dδρ(k, t), at a = 5 as for the anal-
ogous Fig. 2 for the displacement fields in the previous
subsection. The two figures are in fact very similar, par-
ticularly at smaller k. The reason is the same one which
explained the similarity between Fig. 2 and the optical
branch of Fig. 1: the most rapidly growing mode on this
branch already dominates at this time so that the differ-
ence between the expression in Eqs. (34) and (46) reduces
to a trivial time independent factor. Indeed we have now

Dδρ(k, t ! t0) ≈ (k̂ · êmax(k))4 (47)

×
[

(2 + 3α+
max(k))

3(α−
max(k) + α+

max(k))

]2(
t

t0

)2[α−

max(k)− 2
3
]

,

which differs from Eqs. (36) only by the power of the
product k̂ · êmax(k). We do not plot the analogous curves
to those of Fig. 3 as the results look essentially the same.

At a = 5 (i.e. at the time of shell crossing in a typi-
cal cosmological N -body simulation) our Fig. 4 is a plot
of the fractional discrepancy between the theoretically
evolved power (by FLT) and the power as evolved in the
discretization of this system (by PLT). The fractional
error introduced by the discretization is largest, unsur-
prisingly, for the modes at the very largest wavenum-
bers (k =

√
3kN , at the extremities of the first Brillouin

zone), and decreases as k does. At a = 5 the power in
the largest mode is reduced to about one third of its fluid
value, while around k = kN the fractional error varies
from about +10% to more than −50%. At k = kN/2 it
varies from +5% to about −20%, while at k = kN/4 the
total spread is about 10%.

In Fig. 4 is shown also an average of Dδρ(k, a) (at
a = 5) over narrow bins of equal width in k, for a larger
643 lattice. We see that this average is dominated, at
this time, by the more numerous modes with growth co-
efficients which are smaller than the fluid one. We see
that this average describes at all k a net slowing down
of the evolution of the power in the density fluctuations,
ranging from slightly more than 30% at the Nyquist fre-
quency, to 10% at half this frequency, and down to about
3 − 4% at one quarter. It is straightforward to refine
these estimates given the precise parameters of a simu-
lation (i.e. the initial amplitudes to determine time of
shell-crossing). In our conclusions we will discuss the
importance of these effects, and how they might be cor-
rected for in simulations.

2. PS outside the first Brillouin zone

For k outside the FBZ, we have in Eq. (42) only the
non-trivial contribution from the third term. Taking an
input theoretical PS of the form

Pth(k) = Aknf(k/kc) (48)

where f(k/kc) is a function which cuts off the PS at k >
kc, it is straightforward to show (see [5] for further detail)
that this term can be written

P (1)
d (k) = Ak2kn−2

N I(k) (49)

where

I(k) =
∑

h "=0

[k̂ ·E(h − k, t)]2
(

|h − k|
kN

)n−2

×f

(

|h − k|
kc

)

ΘFBZ(h − k) (50)

where h = 2kNm, and the sum runs over all integer vec-
tors m, and ΘFBZ(h−k) is a three dimensional Heaviside
function which is equal to unity inside the first Brillouin
zone, and zero elsewhere. This cut-off is imposed, as dis-
cussed above, in order to avoid aliasing effects.

At a given k the sum I(k) can pick up contributions
only from a single vector h, the one which lies inside the
FBZ when translated by −k. It thus has the intrinsic
periodicity of the lattice PS itself, i.e., I(k) = I(k +
h), and it thus suffices to calculate it for vectors k such
that kN ≤ ki < 2kN . Just outside the FBZ it picks
up contributions from h such that h − k lies just inside
the FBZ, and thus of order f(kN/kc), while at the larger
values k ∼ 2kN it picks up contributions from h such that
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simpliÐed as follows (Suto & Sasaki 1991) :

P22(k) \ k3
98(2n)2

P
0

=
drP1(kr)

P
~1

1
dxP1[k(1 ] r2 [ 2rx)1@2]

(3r ] 7x [ 10rx2)2
(1 ] r2 [ 2rx)2 , (36)

P13(k) \ k3
252(2n)2 P1(k)

P
0

=
drP1(kr)

C12
r2 [ 158 ] 100r2 [ 42r4 ] 3

r3 (r2 [ 1)3(7r2 ] 2) ln
K 1 ] r
1 [ r

K D
, (37)

and we deÐne the total second-order moment in inÐnite-volume limit as follows :P2(k)

P2(k) 4 P22(k) ] P13(k) . (38)

Equations (36) and (37) diverge for some pure power-law models given in equation (21) (Vishniac 1983 ; Makino et al. 1992 ;
see also Jain & Bertschinger 1996). Here we introduce a large-wavenumber cuto† to the linear power spectrum atP1(k)

assuming that it roughly corresponds to the Nyquist frequency, which is determined by the separation ofkmax \ Nkboxparticles (N3 is the number of adopted particles) :

P1(k) \ 4
5
6
0
0

Akn (0 ¹ k ¹ kmax) ,
0 (kmax \ k) .

(39)

Again we discuss quantities for which the normalization factor A is irrelevant. As we see later, our analysis of small-k modes
depends only very weakly on this large-k cuto†. Second-order power spectra in inÐnite volume are given explicitly in Makino
et al. (1992) and Scoccimarro & Frieman (1996) for this power spectrum (eq. [39]) with spectral indices n \ 1,0, [ 1, and [2.
We adopt their analytic results and compare them with our results which include e†ects of the periodic boundaryP2V

(k),
condition.

In Figure 3 we plot the ratio by ( Ðlled and open) squares for modes k with In this Ðgure we ÐxP2V
(k)/P2(k) o k o /kbox ¹ 5.3

the largest wavenumber by N \ 128. For models with n \ 1 and 0 the second-order power spectra in Ðnite volume [P2V
(k)]

reproduce the desired results in inÐnite volume almost perfectly even for the smallest wavenumber In the case of[P2(k)] kbox.the n \ [1 model the di†erence between and becomes smaller than 10% for modes withP2V
(k) P2(k) k/kbox Z 4.

For n \ [1 and [2 models anisotropies of modes are apparent for smaller k. We have found numerically that the
correction terms in equations (31) and (32) play important roles for these anisotropies and Ñuctuations. In Figure 3 the Ðlled
squares represent a subset of the wave modes k that are parallel to the direction (1,0,0) (we denote these modes by k

A
),

including permutations between and Open squares denote other modes. We can see that modes work ask
x
, k

y
, k

z
. k

Arepresentative examples of the deviations due to the periodic boundary condition. Thus we plot the ratio only forP2V
(k)/P2(k)

modes in Figure 4. In this Ðgure two curves correspond to N \ 128 and N \ 256. Two curves coincide almost perfectlyk
Aand show that our results for smaller k depend only very weakly on the adopted cuto† wavenumber with akmax \ Nkboxreasonable choice N Z 128.

FIG. 3.ÈRatios of the second-order power spectra in Ðnite volume, to those in inÐnite volume, We Ðx the cuto† wavenumber at N\128.P2V
(k), P2(k).

Filled squares represent a subset of modes that belong to the modes (see main text for detail). Open squares denote other modes. Solid lines represent thek
Apredictions of the simple method based on the e†ective linear power spectrum (eq. [40]).

3 Note that di†erent modes exist at the same o k o along with permutations among and (e.g., 12 ] 12 ] 42 \ 02 ] 32 ] 32).k
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Figure 2. Evolution of the deviation of the power amplitude with respect to the linear-theory prediction. The dots are the measurements from our simulation,
and red solid lines are the model prediction using the second-order perturbation theory. The integers denote n2 = n2

1 + n2
2 + n3

3 of wavenumbers, and the figures
show different range of n2, n2 = 1–8 (upper left-hand panel), n2 = 9–16 (upper right-hand panel), n2 = 17–24 (lower left-hand panel) and n2 = 25–32 (lower
right-hand panel).

Fig. 3 is the same as Fig. 2, but for phase evolution. We plot
the results only for modes with n1 ≥ n2 ≥ n3, because the mean
of the phase at k,

∑
φ(k), is zero [since φ(k) + φ(−k) = 0]. The

phase shifts are typically ≈0.1 rad at z = 0. Perturbation theory
well reproduces the results. Even if there are infinite modes, the
right-hand side of equation (7) still remains. The phase shift is not
due to the finite box size effect.

Previously, Ryden & Gramann (1991) and Gramann (1992) stud-
ied the evolution of amplitude and phase in each mode using two-
dimensional simulations. They also calculated second-order pertur-
bation theory and found the deviation from the linear theory grows
in proportional to the scale factor in the Einstein–de Sitter (EdS)
model. Suginohara & Suto (1991), Soda & Suto (1992) and Jain &
Bertschinger (1998) also examined the non-linear evolution in each
mode. However, they did not compare the theoretical prediction
with the simulation results in detail. Their motivations were to un-
derstand the evolution of the density fluctuations in the non-linear
regime, whereas our interest here is in the growth of perturbations
at the linear scale.

5 STATISTIC AL ANALYSIS

The previous section considers second-order effects for a single
realization. In this section, we run 100 simulations to calculate

dispersions of amplitude and phase deviations from linear theory.
We prepare the 100 realizations for each of three box sizes of L =
500 h−1 Mpc, 1 and 2 h−1 Gpc, and zin = 30, 20 and 10, respectively.

Fig. 4 shows the remaining amplitude dispersions from the linear-
theory prediction after correcting for the initial randomness at z =
0 for L = 500 h−1 Mpc (top panel), L = 1 h−1 Gpc (middle panel)
and L = 2 h−1 Gpc (bottom panel). Since we already subtract the
initial deviations due to the Gaussian distribution, the residuals arise
from the mode coupling during the evolution. The grey dots with
error bars are the means with 1σ scatters. By using a sufficiently
large number of realizations, the means converge to the true values
(solid line), and the magnitude of the dispersions is insensitive to
the number of realizations. For L = 500 h−1 Mpc, the dispersions
are ∼10 per cent near the first peak, and ∼5 per cent even for a
very large volume of 2 h−1 Gpc on a side. The dashed lines show
the theoretical prediction of the 1σ scatter, which is the rms of the
second term in equation (6):

σ 2
amp ≡

〈[
P̂ (k, z)/P̂ (k, zin)

D(z)2/D2
in

− 1

]2〉

= 4P22(k, zin)
P11(k, zin)

1
#Nk

[
D(z)
Din

]2

. (11)
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Table 2. Notations for various density contrasts and power spectra.

Meaning Description

P L(k,z) Input linear power spectrum section 2

ıL
k;n.z/ Density contrast Gaussian-sampled from P L(k,z) for the n-th realization section 3

ı
N -body
k;n .z/ Density contrast realized by particles using a 2LPT displacement and section 3

evolved by N -body simulation
OP N -body(ki ,z) Power spectrum of the i -th wavenumber bin estimated from N -body equation (3)

simulations taking average over finite modes and realizations

ıPT
k;n .z/ ıL

k;n.z/ evolved by perturbation theory equation (11)
OP PT(ki ,z) Same as OP N -body(ki ,z) but calculated from ıPT

k;n .z/, not ıN -body
k;n .z/ equation (10)

OP N -body
corrected(ki ,z) OP N -body(k,z) corrected for the effect of finite volume equation (12)

OP N -body.ki ;z/ !
!ˇ̌
ˇıN -body

k;n .z/
ˇ̌
ˇ
2
"

i

! 1

N mode
i N run

X

kmin
i <jkj<kmax

i

N runX

n=1

ˇ̌
ˇıN -body

k;n .z/
ˇ̌
ˇ
2

;

(3)

ki ! 1

N mode
i

X

kmin
i <jkj<kmax

i

jkj ; (4)

where N mode
i and N run are the numbers of modes in the i -th

wavenumber bin and the number of realizations, and kmin
i and

kmax
i are the minimum and maximum wavenumbers, respec-

tively. Note that we used h:::ii to denote the average over
modes in the i -th wavenumber bin and over realizations; this
average is not equivalent to the true ensemble average, and
the difference corresponds to the finiteness of the simulated
volume (or number of modes). In what followed, we adopted
equally spaced bins with width ∆k = 0.005hMpc"1.

Finally, the standard errors of the averaged power spectra of
equation (3) could be estimated by

h
error of OP N -body.ki ;z/

i2

=

*#ˇ̌
ˇıN -body

k;n .z/
ˇ̌
ˇ
2

" OP N -body.ki ;z/

$2
+

i

N mode
i N run

: (5)

Note that this value indicates the uncertainty in the estima-
tion of the central value, not the variance among the modes
in each bin.

4.2. Corrections to the Power Spectrum

The matter power spectrum measured from simulations devi-
ates from the prediction for the ideal ensemble average, which
can be obtained only in the limit of an infinite number of
realizations or an infinite box size. This deviation is actu-
ally important for interpreting the results of N -body simula-
tions, as shown by Takahashi et al. (2008); the matter power
spectrum measured from their N -body simulations does not
agree with the predictions of linear theory nor SPT, even at
very large scales (e.g., k . 0.1 hMpc"1). They examined the

effect of a finite box size (hence a finite number of modes), and
showed that the finite-mode effect is actually responsible for
the anomalous growth rate. Here, we briefly summarize their
formulation of the correction.

We follow the standard notation used in cosmological pertur-
bation theory [see Bernardeau et al. (2002) for a review]. Let
us expand the density perturbations in k-space for the n-th
N -body realization as

ı
N -body
k;n .z/ = ıL

k;n.z/ + ı
.2/
k;n.z/ + :::: (6)

Here, the second-order term is expressed as a sum of contribu-
tions from mode couplings between two modes:

ı
.2/
k;n.z/ =

X

p

F .2/.p;k " pIz/ıL
p;n.z/ıL

k"p;n.z/; (7)

where the symmetrized second-order kernel F .2/ is
expressed as

F .2/.x;yIz/ =
1

2
Œ1 + !.z/" +

1

2

x # y
xy

%
x

y
+

y

x

&

+
1

2
Œ1 " !.z/"

.x # y/2

x2y2
; (8)

!.z/ $ 3

7
Ω"1=143

m .z/: (9)

In practice, the time dependence of the kernel function is very
weak, and thus we simply set ! = 3=7 in what follows. The
power spectrum up to the third order in ıL

k;n.z/ averaged over
modes in the i -th wavenumber bin and over realizations is

OP PT.ki ;z/ !
Dˇ̌

ıPT
k;n

ˇ̌2
E

i
; (10)

ˇ̌
ıPT
k;n

ˇ̌2 !
ˇ̌
ıL
k;n.z/

ˇ̌2 + 2<
h
ıL
k;n.z/ı

.2/
"k;n.z/

i
; (11)

where <Œ:::" stands for the real part of a complex number.
Though the second term should vanish for an ensemble average
over infinite modes, it does not vanish exactly if the number of
Fourier modes is finite. The first term grows as / D2

+.z/, while
the second term grows as / D3

+.z/, and thus the second term
becomes important at late time (i.e., at low redshifts).

The method for correcting the deviation from the ideal
ensemble average is to multiply OP N -body(ki ,z) by the ratio of
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Table 2. Notations for various density contrasts and power spectra.

Meaning Description

P L(k,z) Input linear power spectrum section 2

ıL
k;n.z/ Density contrast Gaussian-sampled from P L(k,z) for the n-th realization section 3

ı
N -body
k;n .z/ Density contrast realized by particles using a 2LPT displacement and section 3

evolved by N -body simulation
OP N -body(ki ,z) Power spectrum of the i -th wavenumber bin estimated from N -body equation (3)

simulations taking average over finite modes and realizations

ıPT
k;n .z/ ıL

k;n.z/ evolved by perturbation theory equation (11)
OP PT(ki ,z) Same as OP N -body(ki ,z) but calculated from ıPT

k;n .z/, not ıN -body
k;n .z/ equation (10)

OP N -body
corrected(ki ,z) OP N -body(k,z) corrected for the effect of finite volume equation (12)
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ˇ
2
"

i

! 1

N mode
i N run

X

kmin
i <jkj<kmax

i

N runX

n=1

ˇ̌
ˇıN -body

k;n .z/
ˇ̌
ˇ
2

;

(3)
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i

X
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i

jkj ; (4)

where N mode
i and N run are the numbers of modes in the i -th

wavenumber bin and the number of realizations, and kmin
i and

kmax
i are the minimum and maximum wavenumbers, respec-

tively. Note that we used h:::ii to denote the average over
modes in the i -th wavenumber bin and over realizations; this
average is not equivalent to the true ensemble average, and
the difference corresponds to the finiteness of the simulated
volume (or number of modes). In what followed, we adopted
equally spaced bins with width ∆k = 0.005hMpc"1.

Finally, the standard errors of the averaged power spectra of
equation (3) could be estimated by

h
error of OP N -body.ki ;z/
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k;n .z/
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+
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: (5)

Note that this value indicates the uncertainty in the estima-
tion of the central value, not the variance among the modes
in each bin.

4.2. Corrections to the Power Spectrum

The matter power spectrum measured from simulations devi-
ates from the prediction for the ideal ensemble average, which
can be obtained only in the limit of an infinite number of
realizations or an infinite box size. This deviation is actu-
ally important for interpreting the results of N -body simula-
tions, as shown by Takahashi et al. (2008); the matter power
spectrum measured from their N -body simulations does not
agree with the predictions of linear theory nor SPT, even at
very large scales (e.g., k . 0.1 hMpc"1). They examined the

effect of a finite box size (hence a finite number of modes), and
showed that the finite-mode effect is actually responsible for
the anomalous growth rate. Here, we briefly summarize their
formulation of the correction.

We follow the standard notation used in cosmological pertur-
bation theory [see Bernardeau et al. (2002) for a review]. Let
us expand the density perturbations in k-space for the n-th
N -body realization as

ı
N -body
k;n .z/ = ıL

k;n.z/ + ı
.2/
k;n.z/ + :::: (6)

Here, the second-order term is expressed as a sum of contribu-
tions from mode couplings between two modes:

ı
.2/
k;n.z/ =

X

p

F .2/.p;k " pIz/ıL
p;n.z/ıL

k"p;n.z/; (7)

where the symmetrized second-order kernel F .2/ is
expressed as
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In practice, the time dependence of the kernel function is very
weak, and thus we simply set ! = 3=7 in what follows. The
power spectrum up to the third order in ıL

k;n.z/ averaged over
modes in the i -th wavenumber bin and over realizations is

OP PT.ki ;z/ !
Dˇ̌

ıPT
k;n

ˇ̌2
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i
; (10)

ˇ̌
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ˇ̌2 + 2<
h
ıL
k;n.z/ı

.2/
"k;n.z/

i
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where <Œ:::" stands for the real part of a complex number.
Though the second term should vanish for an ensemble average
over infinite modes, it does not vanish exactly if the number of
Fourier modes is finite. The first term grows as / D2

+.z/, while
the second term grows as / D3

+.z/, and thus the second term
becomes important at late time (i.e., at low redshifts).

The method for correcting the deviation from the ideal
ensemble average is to multiply OP N -body(ki ,z) by the ratio of
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Fig. 2. Comparisons of the simulation power spectra and analytical predictions. Left: Power spectra of our simulations before correction, normalized by
the no-wiggle formula; top z = 3, middle z = 1, bottom z = 0. The error bars show the standard errors [equation (5)]. The lines are theoretical predictions
described in section 2: dotted, standard perturbation theory (SPT); dot-dashed, renormalized perturbation theory (RPT); dashed, closure approximation
(CLA); solid, linear theory (LIN). Right: Same as the left panel, but we plot the difference between the RPT and the four other predictions.

OP PT(ki ,z) and P L(ki ,z):

OP N-body
corrected.ki ;z/ ! OP N-body.ki ;z/ " P L.ki ;z/= OP PT.ki ;z/:

(12)

The individual random nature of each N -body run in both
OP N-body(ki ,z) and OP PT(ki ,z) is weakened by this proce-

dure [equation (12)] as long as the predictions of perturbation
theory are sufficiently accurate. This method does not bias the
corrected value of the power spectrum, even if the perturbation
theory breaks down, since OP PT(ki ,z) approaches P L(ki ,z) in
the limit of an infinite number of Fourier modes.

As in equation (5), the standard errors of equation (12) can
be estimated as

h
error of OP N -body

corrected.ki ;z/
i2

=

*!ˇ̌
ˇıN -body

k;n .z/
ˇ̌
ˇ
2

# OP N-body.ki ;z/
OPPT.ki ;z/

ˇ̌
ıPT
k;n .z/

ˇ̌2
"2

+

i

N runN mode
i

:

(13)

The average of
ˇ̌
ˇıN -body

k;n .z/
ˇ̌
ˇ
2

is OP N -body(ki ,z), while that of
ˇ̌
ıPT
k;n .z/

ˇ̌2
is OP PT(ki ,z), and thus we multiply the ratio in the

second term in the numerator to adjust the mean values.

5. Results

5.1. Comparison between N -Body Simulations and Analytic
Models

As mentioned above, the accuracy of N -body simulations,
themselves, is not perfect, and we do not regard them as being

perfect calibrators of theoretical models. Instead, we compare
the power spectrum of our simulations with those from theo-
retical predictions while aiming at determining the reliable
range of wavenumbers in which both simulations and theoret-
ical models agree.

We first compare the averaged power spectrum over the four
realizations without any corrections to the theoretical predic-
tions. The left panel of figure 2 plots the fractional differences
from the linear power spectrum, P nw(k,z), computed from no-
wiggle formula of Eisenstein and Hu (1998). The error bars
indicate the standard errors of the estimated mean value [equa-
tion (5)]. To clarify the differences between the N -body results
and theoretical predictions, we also plot the residuals from RPT
in the right panel of figure 2.

Since large error bars at k . 0.1 h Mpc#1 are expected to
come mostly from the finite-volume effect, we next correct
this effect. In figure 3, we plot the power spectra, based on
the procedure in subsection 4.2, but we truncate the expansion
of equation (11) at the first term (left, the fractional difference
from the no-wiggle formula; right, residuals from RPT predic-
tion). The error bars become significantly smaller compared
with those in figure 2, because the finiteness effect is reduced
by our methodology. Nevertheless, the results of N -body
simulation still exhibit an error of a few percent, even after
the correction.

Next, we include the second term of equation (11) which
comes from the mode couplings among finite modes for the
correction. Figure 4 shows the results for the fractional differ-
ence between the simulations and the no-wiggle formula (left),
and the residuals from RPT predictions (right). Now the size
of the error bars is further reduced to the subpercent level.

All of the theoretical predictions plotted in figure 4
and N -body simulations agree with each other well within
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Fig. 3. Same as figure 2, but we correct the effect of the finite volume. We truncate the expansion of equation (11) at the first term. The error bars show
equation (13).

Fig. 4. Same as figure 2, but we correct the effect of finite volume, including the second term of equation (11). We also show the 1% limit wavenumbers,
klim

1% , for LIN, SPT, and RPT/CLA by vertical arrows (from left to right).

a limitation of the error bars at large scales up to some
wavenumbers (we determine the range of convergence in
the next subsection). Among the four theoretical predic-
tions, linear theory deviates at the smallest wavenumber.
The range of the agreement in SPT is wider than in linear
theory, because SPT includes the leading-order contribution
of nonlinear growth. RPT and CLA seem to agree well
with N -body simulations compared with SPT, although all
of the three nonlinear models include their own leading-order
nonlinear corrections. This difference in the agreement ranges
corresponds to their different convergence properties; RPT and

CLA possess the property of converging at the scales where the
nonlinearity is very weak.
5.2. Convergence Regime in Wavenumber

We are now able to quantitatively estimate the convergence
regime of wavenumbers where the theories and N -body simu-
lations agree. We define two characteristic wavenumbers, klim

1%

and klim
3% , such that the results of N -body simulations and theo-

retical predictions agree within a limitation of 1% at k < klim
1%

and within a limitation of 3% at k < klim
3% . We confirmed that if

we add 1% (3%) Gaussian errors on the power spectra binned
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ABSTRACT
We present and test a method that dramatically reduces variance arising from the sparse sam-
pling of wavemodes in cosmological simulations. The method uses two simulations which are
fixed (the initial Fourier mode amplitudes are fixed to the ensemble average power spectrum) and
paired (with initial modes exactly out of phase). We measure the power spectrum, monopole and
quadrupole redshift-space correlation functions, halo mass function and reduced bispectrum at
z = 1. By these measures, predictions from a fixed pair can be as precise on non-linear scales as
an average over 50 traditional simulations. The fixing procedure introduces a non-Gaussian cor-
rection to the initial conditions; we give an analytic argument showing why the simulations are still
able to predict the mean properties of the Gaussian ensemble. We anticipate that the method will
drive down the computational time requirements for accurate large-scale explorations of galaxy
bias and clustering statistics, enabling more precise comparisons with theoretical models, and
facilitating the use of numerical simulations in cosmological data interpretation.

Key words: N-body simulations, large-scale structure of the Universe

1 INTRODUCTION

Numerical simulations are an essential tool for cosmology, especially
for interpreting observational surveys (see Kuhlen et al. 2012 for a
review). They can be deployed to probe the impact of a given cosmo-
logical ingredient (e.g. Baldi et al. 2014), create virtual galaxy pop-
ulations (e.g. Overzier et al. 2009), check and develop analytic treat-
ments for structure formation (e.g. Carlson et al. 2009), and under-
stand systematic and statistical errors in cosmological measurements
(e.g. Manera et al. 2015). In the future, simulations could even be
used to constrain cosmological parameters (Angulo & Hilbert 2015).

However, a limitation for all the above applications is the sparse
sampling of Fourier modes due to the finite extent of the simulation
box. A given cosmological simulation is initialised to a particular re-
alisation of a Gaussian random field. The power spectrum of the real-
isation, P̂L(k), therefore differs from the ensemble mean power spec-
trum, PL(k). Given a box large enough to capture all physical effects
(Bagla et al. 2009), the largest-scale modes are still poorly sampled.
This, together with the non-linear coupling of small and large scales,
implies that several-Gpc size boxes generate statistical errors which
limit inferences on 100 or even 10 Mpc scales.

This under-sampling effect is closely connected to (though, ow-
ing to the non-linear evolution, not precisely the same as) observa-
tional cosmic variance. In the observational case, the finite volume
that can be achieved by a given survey constitutes an irreducible
source of uncertainty. On the other hand the computational variance
can be strongly suppressed, at least in principle, until it is smaller
than the cosmic variance and other sources of error. This is usually

∗ rangulo@cefca.es
† a.pontzen@ucl.ac.uk

achieved by simulating huge cosmological volumes (e.g. Rasera et al.
2014) or a large number of realisations (e.g. Takahashi et al. 2009).
Finite computing resources then generate a tension between the need
for large volumes and for high resolution (the latter is required to bet-
ter resolve the distribution of individual galaxies and their internal
structure). Even as supercomputing facilities expand, the tension is
becoming more acute as surveys probe larger scales and constrain the
statistics of fluctuations to greater precision. For instance, reaching
1% accuracy over the whole range of scales to be probed by Euclid
would require the simulation of ∼ 105 Gpc3.

In this Letterwe propose and test a method to suppress the effect
of box variance drastically. We will show that with just two simula-
tions we can achieve the accuracy delivered by tens to hundreds of
traditional simulations at the same scale, depending on the particular
problem in hand. Briefly, the two simulations:

(i) use a fixed input power spectrum, meaning that we enforce
P̂L = PL when generating the initial conditions;

(ii) are paired, so that a hierarchy of effects due to chance phase
correlations can be cancelled (Pontzen et al. 2015).

The first condition destroys the statistical Gaussianity of the in-
put field which, at first sight, would seem to limit the usefulness of
the approach. However we will demonstrate empirically and analyt-
ically that, by all measures explored here, the non-Gaussian correc-
tions have a negligible effect on ensemble mean clustering statistics.

This Letter is set out as follows. In Section 2 we implement and
test our method. In particular, we quantify its performance by com-
paring predictions with those from an ensemble of 300 independent
simulations. We develop an analytic understanding of why the method
works in Section 3. Finally, in Section 4 we present our conclusions.

c© 2016 RAS
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Figure 4. Same as Fig. 3 but for ZA zi = 24 initial conditions. The solid lines

show the predictions of the expected transient behaviour in S3, equation (26),

and S4, equation (27).

Figure 5. Same as Fig. 3 but for ZA zi = 49 initial conditions. The solid lines

show the predictions of the expected transient behaviour in S3, equation (26),

and S4, equation (27).

equation (26) for the skewness (bottom panels) and equation (27)

for the kurtosis (top panels). From this, we conclude that the simu-

lations started with ZA initial conditions have transients which are

well understood at large scales from first principles. Figs 4 and 5

check the PT transients predictions more accurately than done be-

fore (Scoccimarro 1998). We now discuss how these effects impact

on clustering at small scales.

4.2 Power spectrum

The power spectrum is the most widely used statistic. Non-linear

corrections to the power spectrum are controlled by the same non-

linear couplings that determine higher-order statistics at large scales,

Figure 6. Power spectrum for different initial conditions (2LPT zi = 11.5,

ZA zi = 49 and ZA zi = 24, from top to bottom in each panel) compared

to the reference runs at z = 0 (top), z = 1 (middle) and z = 3 (bottom). The

dotted lines show an estimate of the transients for ZA zi = 49 and ZA zi =
24 from one-loop PT.

and thus we expect to see transient behaviour in the non-linear power

spectrum as well.

Fig. 6 shows that this is indeed the case. First, in each panel the top

line denotes the 2LPT zi = 11.5 initial conditions runs, showing that

in the 2LPT case there is almost no transient behaviour, as expected

from the results on the Sp parameters at large scales. On the other

hand, the ZA initial conditions runs show significant transient ef-

fects, up to 10 per cent at z = 3, which can potentially lead to serious

systematic errors for precision studies of the high-redshift Universe.

For example, a ZA start at zi = 30 was used for the Lambda cold

dark matter simulation from which the latest fitting formula for the

non-linear power spectrum (Smith et al. 2003) was derived. Our ref-

erence runs show a power spectrum for k ! 2 h Mpc−1 that is as much

as 7 per cent higher at z = 0 and as much as 13 per cent higher at z =
3 when compared to the Smith et al. (2003) fitting formula. These

deviations are in reasonable agreement with the expectations based

on Fig. 6. A detailed comparison of the non-linear power spectrum

in our simulations to fitting formulae, one-loop PT and renormal-

ized PT (Crocce & Scoccimarro 2006) will be discussed elsewhere.

It is also important to note that a relatively high-redshift ZA start

such as zi = 149, which we ran as a test, leads only to mild im-

provements compared to ZA zi = 49 in Fig. 6, i.e. the suppression

in the non-linear regime is still of the order of 1 per cent, consistent

with the a−1 slow scaling of transients in the ZA. We have checked

that these results do not depend on the accuracy of the force, time

integration, and softening. For example, using the HQ runs (see

Table 1) for zi = 49 we obtain very similar results to those in Fig. 6,

specifically within about 0.04 per cent for z = 0, 1 and 0.02 per cent

for z = 3. Also, as shown in Fig. 6, the magnitude of the measured

transients in the ZA zi = 49 and ZA zi = 24 runs are in reasonable

agreement with their estimation by one-loop PT using the kernels

in equation (15), particularly at high redshift where the agreement

should be best.

Fig. 7 presents results in redshift space for the ZA zi = 49 ini-

tial conditions runs. The combined effect of density and velocity

transients leads to non-trivial behaviour. As shown by Scoccimarro

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 373, 369–381
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Figure 7. Redshift-space power spectrum for ZA zi = 49 initial conditions

compared to the reference runs at z = 0 (top), z = 1 (middle) and z = 3 (bot-

tom). In each panel, we show modes parallel to the line of sight (triangles),

monopole (circles) and modes perpendicular to the line of sight (squares).

(1998), transients in the velocity field are larger than in the density

field. For modes parallel to the line of sight (triangles in each of the

panels in Fig. 7), small-scale velocities suppress power due to ve-

locity dispersion. Therefore, although transients in real space make

the power smaller, when mapped into redshift space with velocities

that are even more suppressed by transients than the density, the

overall effect is to increase the power spectrum along the line of

sight compared to the reference runs that have no transients. Since

there is cancellation between density and velocity transients, the

overall effect is somewhat weaker than in the real space power.

For modes perpendicular to the line of sight, on the other hand,

the effect is opposite since these modes are unaffected by redshift-

space distortions and show the same suppression in power seen in

Fig. 6. This means that when the redshift-space power spectrum

is averaged over angles with respect to the line of sight to obtain

the monopole, these opposite behaviours lead to cancellation that

makes the monopole less sensitive to transients (see circles in Fig. 7).

However, the anisotropy of the redshift-space power spectrum is

affected by transients much more than the monopole.

4.3 Bispectrum

The bispectrum is also affected by transients, and from equa-

tions (17) and (22) we see that at the largest scales where second-

order Eulerian PT holds it should be affected most for triangles that

are most different from elongated triangles (which correspond to

x = 1 and show no transient behaviour). Fig. 8 shows the bispectrum

at z = 0 for different initial conditions divided by that in the reference

runs for triangles with k1 = 0.12 h Mpc−1 and k2 = 2k1 as a function

of the angle θ between k1 and k2. From this, we see again that the

2LPT zi = 11.5 initial conditions show very little (! 0.2 per cent)

transient effects, whereas the ZA initial conditions runs show the ex-

pected transient signature, minimal at elongated triangles and max-

imal at isosceles triangles. These can lead to systematic errors in the

determination of bias and cosmological parameters, given present

expected observational errors (Sefusatti et al. 2005).

Figure 8. Bispectrum for different initial conditions (2LPT zi = 11.5, ZA

zi = 49 and ZA zi = 24, from top to bottom) compared to the reference runs

at z = 0. The symbols shown correspond to k1 = 0.12 h Mpc−1, k2 = 2k1

with θ the angle between k1 and k2.

Figure 9. The PDF of the density contrast δ in units of rms value, σ ≡
〈δ2〉1/2, for our reference run (2LPT zi = 49) and ZA zi = 24 initial condi-

tions.

4.4 The PDF

The suppression of higher-order moments by transients means that

the PDF of density fluctuations is also affected. Fig. 9 shows a

comparison of the PDF of our reference run (2LPT zi = 49) and

ZA zi = 24 initial conditions at redshift z = 3 for a smoothing scale

R = 10.84 h−1 Mpc. Note that how the non-Gaussian features of the

PDF are changed by transients: the right tail is suppressed, whereas

the left cut-off is enhanced, leading to smaller skewness. Fig. 10

shows the ratio of the PDF for different initial conditions to that of

the reference run, to better appreciate the differences. Although the

differences at the left tail are more significant, the PDF is falling
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