

Clustering, lensing, and ISW/Rees-Sciama from the DEMNUni neutrino simulations

Carmelita Carbone

INAF - Astronomical Observatory of Brera (Milan)

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 291521

Nonlinear evolution of the LSS of the Universe: theory meets expectations May 26th, 2016, IAP, Paris

Massive neutrino effects in the linear regime

Modification of the Matter-Radiation equality time Slow down the growth of matter perturbations

Lesgourgues & Pastor, Physics Reports, 429, 6, 2006

Spectro-Euclid forecasts

Table 5: $\sigma(M_{\nu})$ and $\sigma(N_{\text{eff}})$ marginalised errors from LSS+CMB							
General cosmology							
$fiducial \rightarrow$	$M_{\nu} = 0.3 \text{ eV}$	$N^a M_{\nu} = 0.2 \text{ eV}^a$	$M_{\nu} = 0.125 \text{ eV}^b$	$M_{\nu} = 0.125 \text{ eV}$	$^{c}M_{\nu} = 0.05 \text{ eV}$	$^{b}N_{\text{eff}}=3.04^{d}$	
slitless+BOSS+Planck	0.035	0.043	0.031	0.044	0.053	0.086	
$\Lambda CDM cosmology$							
slitless+BOSS+Planck	0.017	0.019	0.017	0.021	0.021	0.023	
		bc	11. 1	()	0		
"for degenerate spectrum: $m_1 \approx m_2 \approx m_3$; "for normal hierarchy: $m_3 \neq 0, m_1 \approx m_2 \approx 0$							
^c for inverted hierarchy: $m_1 \approx m_2$, $m_3 \approx 0$; ^a fiducial cosmology with massless neutrinos							

Only 3 active neutrinos for M_v errors

CC et al. 2011

If M_v is > 0.1 eV, spectroscopic Euclid will be able to determine the neutrino mass scale independently of the model cosmology assumed. If M_v is < 0.1 eV, the sum of neutrino masses, and in particular the minimum neutrino mass required by neutrino oscillations, can be measured in the context of a LCDM model. DE FoM decreases by a factor 2-3 wrt the massless case. Important to include NL info.

Effects in the non-linear regime

Simulating neutrinos as particles

Add neutrinos as an extra dark matter particle species with large thermal velocity given by the FD distribution

Works best for large neutrino masses Simple, easy to implement

N-body simulations with neutrino particles

	CDM	CDM + v		
<u>Power</u> <u>spectrum</u>	$P_m(k)$	$P_{cb}(k) \qquad \qquad$		
Growth factor	Scale	Scale dependent		
	independent			
<u>Growth rate</u>	Scale	Scale dependent		
	independent			
<u>Velocities</u>	Peculiar	Peculiar		
		Peculiar + thermal		

Effects on matter power spectrum

512 Mpc/h 150 Mpc/h Fitting formula Linear prediction

Brandbyge, Hannestad, Haugbolle, Thomsen, 2008 Viel, Haehnelt, Springel, 2010 Bird, Viel, Haehnelt, 2012 Wagner, Verde, Jimenez, 2012 Ali-Haïmoud&Bird, 2012 Agarwal, Feldman, 2011 Massara, FVN, Viel, 2014 Rossi, Palanque-Delabrouille, Borde, Viel, Yeche, Bolton, Rich, Le Goff, 2014 Upadhye, Biswas, Pope, Heitmann, Habib, Finkel, Frontiere, 2014 Inman, Emberson, Pen, Farchi, Yu, Harnois-Deraps, 2015 **CC** et al 2016

DEMNUni simulations (PI Carbone)

- (5+8)x10⁶ cpu-hours on Tier-0 BGQ/FERMI at CINECA
- ➤ 4 mixed dark matter cosmological simulations for CMB and LSS analysis in the presence of massive neutrinos and 10 more with M_v-w₀-w_a by the end of 2016
- Planck cosmology M_v=0, 0.17, 0.3, 0.53 eV
 - Gadget-3 with v-particle component (Viel et al. 2010)
 - box-side size: 2 Gpc/h
- particle number: 2 x 2048³ (CDM+v);
- PMGRID: 4096 (2Np)
 - CDM mass: 8 x 10¹⁰ M_{\Box}/h (neutrino particle mass depends on M_{v} 1% at k=1)
- softening length: 20 kpc/h
- starting redshift: z =99

$$k_{\rm nr} = 0.018 (m_{\nu}/1 {\rm eV})^{1/2} \Omega_m^{1/2} h/{\rm Mpc}$$

Simulation outputs

- > 90 TB/sim of data
- \triangleright 62 temporary snapshots per simulation: ~0.54 TB/snap (CDM+ v)
- 62 halo-catalogs
- 62 sub-halo catalogs
- Matter power-spectra and correlation functions for all the 62 snapshots
- 62 temporary gravitational potential grids of size 4096³ (for CMB weak-lensing)
- 62 temporary grids of size 4096³ for the derivative of the gravitational potential (for ISW/Rees-Sciama)

et al. 2015

Castorina, CC

Comparison between the DEMNUni runs and previous, recent simulations of massive neutrino cosmologies in terms of cold dark matter mass resolution and volume

DEMNUni matter power spectra for M_v=0.3 eV

The large volume and mass resolution of the DEMNUni simulations allow to test different probes, and their combinations, in massive neutrino cosmologies, at the level of accuracy required by current and future galaxy surveys.

$k_{\rm fs}(z) = 0.82 H(z)/H_0/(1+z)^2 (m_{\rm V}/1{\rm eV}) \ h\,{\rm Mpc}^{-1}$

CDM- and **v**-halos from the **DEMNUni** simulations

CDM density

 ν density

CDM+ ν density

CDM/v clustering in high resolution simulations (about 2400 times smaller than DEMNUni)

Courtesy of Villaescusa-Navarro

L=150 Mpc/h N_{cdm} =512³ N_{v} =1024³ z_{in} =49

CDM/v clustering in high resolution simulations (2400 times smaller than DEMNUni)

Courtesy of Villaescusa-Navarro

L=150 Mpc/h N_{cdm} =512³ N_{v} =1024³ Z_{in} =49

Bianchi et al work in progress

 $P_m(k;z) = (1 - f_\nu)^2 P_{cb}(k;z) + 2(1 - f_\nu)f_\nu P_{cb,\nu}(k;z) + f_\nu^2 P_\nu(k;z)$

 $P_m(k)$ is described at the 1% level accuracy up to k=1h/Mpc, assuming the nonlinear evolution of CDM alone, and the linear prediction for the other components

Perturbation theory vs Simulations

 $P_{mm}^{PT}(k) = (1 - f_{\nu})^2 P_{cc}^{PT}(k) + 2 (1 - f_{\nu}) f_{\nu} P_{c\nu}^L(k) + f_{\nu}^2 P_{\nu\nu}^L(k)$ Tarug

(RegularizedPT: Bernardeau et al 2008, Taruya et al 2012)

Here the neutrino induced scale-dependence is limited to the linear growth factor, D(k,z), while the perturbation kernels are standard ones. PT works better with M_v

Modifications to Halofit

 $P_{mm}^{HF}(k) \equiv (1 - f_{\nu})^2 P_{cc}^{HF}(k) + 2 f_{\nu} (1 - f_{\nu}) P_{c\nu}^{L}(k) + f_{\nu}^2 P_{\nu\nu}^{L}(k) - P_{cc}^{HF}(k) = \mathcal{F}_{HF}[P_{cc}^{L}(k)]$

HALOFIT mapping only for CDM, other contributions are assumed to be linear. Shaded areas denote regions beyond the accurracy expected from Halofit.

Halo mass function

$$\frac{dn(M,z)}{dM} = v f(v) \frac{\rho_m}{M^2} \frac{d\ln v}{d\ln M} - \begin{cases} v \equiv \frac{\delta_c}{\sigma(M,z)} & \delta_c = 1.686 \\ \sigma^2(M,z) = \frac{1}{2\pi^2} \int_0^\infty k^2 P_m(k) W^2(k,R) dk \\ M = \frac{4\pi}{3} \rho_m R^3 \end{cases}$$

What about massive neutrino cosmologies?No prescription

• Matter prescription

Brandbyge et al. 2010 Marulli et al. 2011 Villaescusa-Navarro et al. 2013

• Cold dark matter prescription

Ichiki & Takada 2011 Castorina et al. 2014 Costanzi et al. 2014 Castorina et al. 2015

Halo Mass Function: FoF

We recover the ρ_{cc} and σ_{cc} prescription from Ichiki&Takada (2012) and Castorina et al (2014) for the MICE formula. Note the large halo-mass range.

Halo Mass Function: FoF (MICE) vs SO (Tinker)

= (= 0.57 = 0z = 0.50.8 ACDM atio to ACDM A CDM to A CDM 0.6 0.6 06 06 $m_{\nu} = 0.17 \text{ eV}$ ratio to 2 $m_{\rm v} = 0 \, {\rm eV}$ 0.4 ratio $m_{\rm e} = 0.53 \, {\rm eV}$ 0.4 $m_{\rm v} = 0.17 \, {\rm eV}$ 0.4 σ_{cc} $m_{v} = 0.3 \text{ eV}$ 0.2 0.2 σ_{mn} σ_m $m_v = 0.53 \text{ eV}$ ---- σ₀ 0.0 0.0 10^{13} 10^{14} 10^{15} 10^{13} 10^{14} 1015 10^{14} 10^{13} 10^{15} 10^{13} 10^{14} 1015 $M [h^{-1} M_{\odot}]$ $M [h^{-1} M_{\odot}]$ $M[h^{-1}M_{-}]$ $M[h^{-1}M_{-}]$ z = 1.5z = 1z = 1z = 1.5ACDM ACDM CDM CDM 0.6 0.6 0.6 atto to A to A ratio to ratio to 0.4 atio 0.4 0.4 04 0.2 0.2 0.20 3 0.0 0.0 10^{13} 10^{14} 10^{13} 10^{14} 10^{13} 10^{14} 1015 10^{13} 10^{14} 10^{15} $M [h^{-1} M_{\odot}]$ $M [h^{-1} M_{\odot}]$ $M [h^{-1}M]$ $M [h^{-1}M]$

Castorina, CC et al. 2015

The ρ_{cc} and σ_{cc} prescriptions allow to recover the theoretical MF for both FoF and SO halos

Same conclusions for the bias

Castorina, CC et al. 2015

$$b_c = \sqrt{\frac{P_{hh}}{P_{cc}}}$$
$$b_m = \sqrt{\frac{P_{hh}}{P_{mm}}}$$

The σ_{cc} prescription mitigates the v-induced scale dipendence of the bias at intermediate scales. The halo bias defined with respect to DM presents a spurious scale-dependence due to the difference between the cold and total matter power spectra.

Measurements in redshift space

The scale dependent growth-rate

 $\frac{P_{hh,0}(k)}{25} - 20 - 5$

Using b_m instead of b_{cc} implies a systematic error on the determination of the growth rate at the level of 1-2%

 $d\ln D(a)$

 $d\ln a$

 $\overline{P_{hh}(k)} \frac{1}{3}$

 $f(a) \equiv$

f(k)

with increasing M_{ν} and z

$$P_{hh,0}(k) = \left(1 + \frac{1}{3}\beta + \frac{1}{5}\beta\right)P_{hh}(k)$$
$$P_{hh,2}(k) = \left(\frac{4}{3}\beta + \frac{4}{7}\beta^2\right)P_{hh}(k)$$
$$P_{hh,4}(k) = \frac{8}{35}\beta^2 P_{hh}(k),$$

expectations decrease with increasing \mathbf{M}_{v} and z

$$P_{hh,0}(k) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^{2}\right) P_{hh}(k)$$
$$P_{hh,2}(k) = \left(\frac{4}{3}\beta + \frac{4}{7}\beta^{2}\right) P_{hh}(k)$$
$$P_{hh,4}(k) = \frac{8}{35}\beta^{2} P_{hh}(k),$$

Bel, CC et al. in prep

$$P_{hh,0}(k) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right) P_{hh}(k)$$
$$P_{hh,2}(k) = \left(\frac{4}{3}\beta + \frac{4}{7}\beta^2\right) P_{hh}(k)$$
$$P_{hh,4}(k) = \frac{8}{35}\beta^2 P_{hh}(k),$$

Bel, CC et al. in prep

$$P_{hh,0}(k) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right) P_{hh}(k)$$
$$P_{hh,2}(k) = \left(\frac{4}{3}\beta + \frac{4}{7}\beta^2\right) P_{hh}(k)$$
$$P_{hh,4}(k) = \frac{8}{35}\beta^2 P_{hh}(k),$$

Bel, CC et al. in prep

$$P_{hh,0}(k) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right) P_{hh}(k)$$
$$P_{hh,2}(k) = \left(\frac{4}{3}\beta + \frac{4}{7}\beta^2\right) P_{hh}(k)$$
$$P_{hh,4}(k) = \frac{8}{35}\beta^2 P_{hh}(k),$$

Bel, CC et al. in prep

$$P_{hh,0}(k) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right) P_{hh}(k)$$
$$P_{hh,2}(k) = \left(\frac{4}{3}\beta + \frac{4}{7}\beta^2\right) P_{hh}(k)$$
$$P_{hh,4}(k) = \frac{8}{35}\beta^2 P_{hh}(k),$$

Bel, CC et al. in prep

$$P_{hh,0}(k) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right) P_{hh}(k)$$
$$P_{hh,2}(k) = \left(\frac{4}{3}\beta + \frac{4}{7}\beta^2\right) P_{hh}(k)$$
$$P_{hh,4}(k) = \frac{8}{35}\beta^2 P_{hh}(k),$$

Bel, CC et al. in prep

$$P_{hh,0}(k) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right) P_{hh}(k)$$
$$P_{hh,2}(k) = \left(\frac{4}{3}\beta + \frac{4}{7}\beta^2\right) P_{hh}(k)$$
$$P_{hh,4}(k) = \frac{8}{35}\beta^2 P_{hh}(k),$$

Lensing and ISW-RS quantities

$$\Psi(\mathbf{\hat{n}}) \equiv -2 \int_0^{r_*} \frac{r_* - r}{r_* r} \frac{\Phi(r\mathbf{\hat{n}}; \eta_0 - r)}{c^2} \,\mathrm{d}r$$

Lensing potential in the small-angle scattering limit (Born approximation)

r= comoving distance from the observer

$$\Delta T(\hat{n}) = \frac{2}{c^3} \bar{T}_0 \int_0^{r_{\mathrm{L}}} \dot{\Phi}(r, \hat{n}) \, a \, dr,$$

Total ISW-RS effect

$$\widetilde{X}(\hat{\mathbf{n}}) = X(\hat{\mathbf{n}} + \nabla \Psi(\hat{\mathbf{n}}))$$

X = T, Q, U

Gradients in the grav. potential generated by LSS cause deviations in the CMB photon propagation from LS to us:

points in a direction **n**` actually come from points on the last scattering surface in a displaced direction **n**`= **n** $+\nabla\psi$

Deflection angle maps for z_s **=1**

CC et al. 2016

Weak-lensing angular power spectra at different redshifts

CC et al. 2016

Lack of power on small scales due to grid resolution. The neutrino damping effect is correctely recovered up to *l*=2000

CMB-lensing angular power spectra

CMB-lensing vs ISW/Rees-Sciama

CC et al. 2016

ISW/Rees-Sciama angular power spectra

At high redshift, the ISW effect would be null on all scales for M_v =0, while for M_v >0 it is still active on small scales because of free-streaming.

 $k_{\rm fs}(z) = 0.82H(z)/H_0/(1+z)^2(m_v/1{\rm eV}) \ h\,{\rm Mpc}^{-1}$

ISWRS-CMBlens cross correlation

Sign inversion: the non-linear transition moves toward smaller scales with increasing neutrino mass

ISWRS-Weaklens cross correlation

Difference depends on the source redshift. Excess of power of the cross signal with respect to the auto-correlation signal.

FIG. 2: Ratio of the cross-correlation multipoles C_l^{TG} and auto-correlation multipoles C_l^{GG} obtained for two cosmological models with neutrino density fractions equal to $f_{\nu} = 0.1$ or 0, and the same value of other cosmological parameters (see the text for details).

(Lesgourgues et al. 2008)

ISW-galaxy correlation predictions as function of the median redshift

 \bigcirc

 \bigcirc

et

al.

2016

DEMNUni collaboration

- Initial conditions: M. Zennaro, J. Bel, F. Villaescusa, C. Carbone, E. Sefusatti
- P-Gadget3 code with massive neutrinos: M. Viel, V. Springel, K. Dolag, M. Petkova
- Simulation runs: C. Carbone
- CMB-lensing and ISW/Rees-Sciama: C. Carbone
- Galaxy clustering: E. Castorina, M. Zennaro, J. Bel, C. Carbone, E. Sefusatti
- HOD/SAM with massive neutrinos: M. Zennaro, R. Angulo, A. J. Hawken
- SZ-maps and cross-correlation with lensing: M. Roncarelli, M. Calabrese, C. Carbone
- Cross-correlation clusters/weak-lensing: M. Calabrese, C. Carbone
- High-order statistics: R. Ruggeri, E. Castorina, J. Bel, E.Sefusatti
- Voids with massive neutrinos: A. J. Hawken, B. Granett

Conclusions

- ✓ Very large neutrino simulations for different probe combinations
- ✓ Previous results on bias and MF recovered and confirmed
- ✓ New Halofit prescription to account for massive neutrinos
- ✓ Good behaviour of exiting PT approximations if applied to CDM alone.
- ✓ Detection of the scale dependent growth-rate at linear scales
- Suppression of the CMB/weak-lensing signals, depending on the neutrino mass and source redshifts
- Enhancement of power at the ISW-RS transition of about 10% due to neutrino free-streaming
- Enhancement of the \u03c6T cross-correlation in the case of the CMB lensingpotential, and for high redshift lensed sources, depending on the neutrino mass
- Suppression of ϕ T cross-correlation for low median redshift surveys, but anyway larger than $\phi \phi$ auto-correlation.