Massive neutrinos and LSS beyond linear approximation

Diego Blas

w/ M. Garny, T. Konstandin and J. Lesgourgues arXiv:1408.2995 [astro-ph.CO] w/ V. Desjacques, H. Dupuy, M. Garny, M. Ivanov, and S. Sibiryakov arXiv:16xx.xxxx

Particle physics constraints on m_{ν}

(Massive) neutrinos in cosmology

Cosmology is very sensitive to neutrinos properties

all neutrino species are relativistic

Mostly sensitive to **massless** properties N_{eff}

Bounds

CMB: $\sum m_{\nu} < 0.49 \text{ eV} (95\% Planck TT, TE, EE + lowP)$ Neutrino mass and N_{eff} affect many other LSS observables Ly- α , Shear, Mass function,...

Description of neutrinos

thermal background $f_{\nu 0}(\eta, p) \equiv \left(e^{p/T_{\nu}} + 1\right)^{-1}$ distribution function $\Psi_{\nu}(\eta; \bar{x}, \bar{p}) = \frac{f_{\nu}(\eta; \bar{x}, \bar{p})}{f_{\nu 0}(\eta, p)} - 1$

(linear) Boltzmann equation ($E(p) = \sqrt{p^2 + m_{\nu}^2}$)

Massless neutrinos E(p) = p free-stream and do not cluster $\delta \rho_{\nu} = \int d^3 p E(p) f_{\nu}(\eta, \bar{x}, \bar{p}), \quad \delta \rho_{\nu}(k)'' = (c^2(\eta)k^2 - 3a^2H^2/2)\delta \rho_{\nu}(k) + \dots$ 1/3

Massive: when $p \ll E(p) \sim m$, neutrinos become **cold (cluster)** $k_{fs} \sim aH/c$, $c(\eta) \sim T_{\nu}(\eta)/m_{\nu}$

they fall into DM potentials!

known law e.g. Shoji, Komatsu 2010

Effects of m_{ν} on the linear power spectrum

$$\delta \equiv \frac{\sum_{i=b,c,\nu} \delta \rho_i}{\sum_{i=b,c,\nu} \bar{\rho}_i}$$

Lesgourgues, Mangano, Miele, Pastor CUP 2013

Forecasts PS

Beyond linear theory

N-body (with warm components) Demanding (hard for MC) Halo model (~10% precision)

The effect is 5% at BAO scales (mildly non-linear regime): Non-linear perturbation theory DB, Garny, Konstandin, Lesgourgues'14 (also Führer-Wong'14, Dupuy-Bernardeau'14 Archidiacono-Hannestad'15)

DM as a **non-linear** pressureless perfect fluid (SPT or 'beyond')

Q1: Since δ_{ν} is small, can it be treated as linear? $\dot{\theta}_{cb} + \mathcal{H}\theta_{cb} + \frac{3}{2}\mathcal{H}^2\Omega_m[f_{\nu}\delta_{\nu}^{\ L} + (1 - f_{\nu})\delta_{cb}] = -\beta\delta_{cb}\theta_{cb} \quad (+ \cup \vee)$ \bigwedge violates conservation of momentum! $\delta_k \sim k^2$ at low k from loops spoiled!

AI: NO! (it introduces a spurious large effect at NLO)

(Dupuy talk, or wait for a few slides)

Linear vs Non-linear v's II

Q2: How to include ν non-linearities? (even linear order is **NOT** a fluid at **all redshift**) Blas, Lesgourgues, Tram 2011

A2: At low-redshift ($z < z_{nr} \sim 10^2$) the fluid is very cold non-cold corrections are $O(T_{\nu}/m_{\nu})$

Neutrinos at late times

$$\dot{\delta}_{\nu} + \theta_{\nu} = -\alpha \theta_{\nu} \delta_{\nu}$$

 $\dot{\theta}_{\nu} + \mathcal{H}\theta_{\nu} + \frac{3}{2}\mathcal{H}^2\Omega_m[f_{\nu}\delta_{\nu} + (1 - f_{\nu})\delta_{cb}] - k^2c_s(t)^2\delta_{\nu} = -\beta\delta_{\nu}\theta_{\nu}$ $+O(T_{\nu}/m_{\nu})$ i.c. from the Boltzmann equations at $10 > z > 10^2$

linear physics

Shoji, Komatsu 2009

Accuracy of linear approximations

DB, Garny, Konstandin, Lesgourgues 2014 CLASS CODE, Blas, Lesgourgues, Tram, 2011

Linear Fluid vs Boltzmann equation

Results at NLO

DB, Garny, Konstandin, Lesgourgues 2014

Scale dependent growth factor: better solved with

$$\partial_{\eta}P_{ab}[k,\eta] \sim -\Omega(k,\eta)_{ac}P_{cb} + \int \gamma_{acd}B_{cdb}(k-q,-k,q)$$

 $\partial_{\eta}B_{abc} \sim -\Omega(k,\eta)_{ad}B_{dbc} + \int \gamma PP$
Pietroni 2008
Audren Lesgourgues 2011

Comparison of NLO Results

DB, Garny, Konstandin, Lesgourgues 2014

Does it matter?

NLO-SPT is not enough for 5% accuracy at BAO

NNLO and resummations/EFT more sensitive to the short mode/long mode (de)coupling

Predictive descriptions require a good $\sim k^2$ behaviour

Zhu et al. 2013

Neutrino Masses from Relative Velocities

Two point correlation function

DB, Dupuy, Desjacques, Garny, Ivanov, Sibiryakov (under study)

Peloso et al 2015

Smooth vs wiggly linear CF

Two point correlation function

DB, Dupuy, Desjacques, Garny, Ivanov, Sibiryakov (under study)

Peloso et al 2015

IR-resummed CF

DB, Garny, Ivanov, Sibiryakov 2016

We use TSPT* final formula for the single fluid approach

DB, Garny, Ivanov, Sibiryakov 2015

IR-resummed CF

IR-resummed CF

Non-trivial dependence (also at NNLO/EFT?)

Peloso et al 2015 also considered RSD and halos

Conclusions

- LSS is in an advantageous situation to fix the mass of ν (missing parameter in the PDG)!
- Influence in LSS for whole mass range of ν at mildly non-linear scales
- SPT with two fluids: required from precision and momentum conservation (relative velocities?)
- Large impact on CF close to BAO peak: peak height/position, dip height/position, and shape!

Future

- NNLO/EFT/UV effects: impact on forecast!
- More comparison with N-body
- Understanding other observables/systematics (PS)
- Multi-fluids in TSPT, relative velocities