

1st "ILP Day", Paris, 13 March 2014

SEARCH FOR COSMOGENIC PHOTONS WITH THE PIERRE AUGER OBSERVATORY

Mariangela Settimo LPNHE, Universites Paris VI and Paris VII

Flux predictions for cosmogenic photons

Photon flux predictions sensitive to:

- source properties (injection spectrum, maximum energy, primary types, source distrib./evol.)
- propagation (electromagnetic cascades in EBL, magnetic fields)

M.S., M.De Domenico, arXiv:1311.6140

depending on the observations, some astrophysical scenarios can be constrained/disfavored

The Pierre Auger Observatory: the hybrid design

Photon identification

SD events ($E > 10^{19} \text{ eV}$):

Deeper shower development and smaller number of muons

Upper limits on photon flux

Expected sensitivity in the near future

A new trigger designed (installed in the stations on June 2013):

select station with small signals, not dominated by the muonic component
especially effective for photons

Outlook

Observation/Non-observation of UHE photons:

- Independent prove of the GZK effect
- Clarify the nature of the observed flux suppression

Ilux of cosmogenic photons sensitive to source properties (primary mass, injection spectra, distribution) and extragalactic environment

- hints/constraints on astrophysical scenarios for the origin of ultra-high energy cosmic rays
- Disfavor/constrains top-down models
- Open the most extreme window for astronomy

 Impact on the measurements of energy spectrum, cross sections, mass composition and possible consequences for fundamental physics (LIV)

Backup slides

Pre-shower: impact on EAS development (II)

- FASTER SHOWER DEVELOPMENT
- SMALL SHOWER-TO-SHOWER FLUCTUATIONS
- COMPETITION OF LPM AND PRESHOWER

Shower development for different primaries

(CORSIKA simulations: http://www-ik.fzk.de/corsika/)

Light primaries develop deeper than heavy component

Photon induced showers deeper than hadrons (on average)

Photon search: the hybrid approach (E > 1EeV)

M.S. for the Pierre Auger Collaboration, ICRC 2011, arXiv: 1107.4805

- FD:
 - Deeper development of the air showers

Larger X_{max}

• SD:

- Smaller detected signal at a given distance
- Fewer triggered stations

$$S_b = \sum_i S_i \left(\frac{R_i}{1000}\right)^4$$

S_i : station signal [VEM] *R_i* : station distance to the shower axis [m]

details on S_b: G. Ros et al., arXiv 1104.3399

Smaller *S*_b

Search for photons with SD: E>10 EeV

Events observed by SD-alone
radius of curvature and risetime t_{1/2} at
1000 m used for photons identification

Search for photons with SD: E>10 EeV

Events observed by SD-alone
radius of curvature and risetime t_{1/2} at
1000 m used for photons identification

Deviations of data from the mean value of R and t_{1/2} expected for photon showers combined with a **Principal Component Analysis**

Upper limits on photon flux

E_0 [EeV]	N_{γ}	$\begin{split} \phi_{\gamma}^{95CL}(E_{\gamma} > E_{0}) \\ [\mathrm{km}^{-2}\mathrm{sr}^{-1}\mathrm{y}^{-1}] \end{split}$
1	6	8.2 × 10 ⁻²
2	0	2.0×10^{-2}
3	0	2.0×10^{-2}
5	0	2.0×10^{-2}
10	0	2.0×10^{-2}

Impact of systematic uncertainties

(Exposure, ΔX_{max} , ΔS_b , Energy scale, hadronic interaction model and mass composition assumptions)

$$^{+20\%}_{-64\%} (E_0 = 1 \text{ EeV})$$

 $^{+15\%}_{-36\%} (E_0 > 1 \text{ EeV})$

M.S. for the Pierre Auger Collaboration, ICRC 2011, arXiv: 1107.4805