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Primordial Non-Gaussianities

The primordial curvature field Φ describes the initial anisotropies.

The 2-point function 〈Φ(x1)Φ(x2)〉 and 3-point function
〈Φ(x1)Φ(x2)Φ(x3)〉 can be calculated from the inflation action.

E.g. single field slow roll inflation

BΦ(k1, k2, k3) ≈ N

(k1k2k3)2

(
(4ε− 2η)S local(k1, k2, k3) +

5

3
εSequil(k1, k2, k3)

)

The bad news: NG in single field slow roll inflation is
unobservably small.

But: The algebraically simplest model is not necessarily the most
realistic one. Inflationary Lagrangians derived from string theory
or from EFT considerations often predict significant NG.
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Non-Gaussianity in the CMB

How to calculate the CMB anisotropy from the primordial anisotropy?

The CMB is the most straight forward (linear) way to measure
primordial NG (but not necessarily the most powerful)

A given primordial curvature field Φ(x) induces a CMB temperature
anisotropy T (n̂) =

∑
lm almYlm(n̂) with

alm ∝
∫

d3k Φ(k) Trad(k) Ylm(k̂)

From 〈Φ(x1)Φ(x2)Φ(x3)〉 we
can thus calculate the CMB
bispectrum

Bm1m2m3
l1l2l3

= 〈al1m1al2m2al3m3〉
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Oscillations in the primordial bispectrum

A special class of non-gaussianities: Oscillations

The inflaton potential may contain steps or periodic features. For
example

V (ϕ) =
1

2
m2ϕ2

[
1 + tanh

(
ϕ− ϕs

d

)]
The feature forces the inflaton away from the attractor solution,
and induces oscillations in the power spectrum and bispectrum as
it relaxes back.

A simple and generic shape is

Bosci
Φ (k1, k2, k3) =

fNL
(k1k2k3)2

sin

(
k1 + k2 + k3

3kc
+ φ

)
This shape is factorizable.

Several inflation models predict oscillations. They have not been
constrained at high oscillation frequency.
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Oscillations in the CMB

To calculate the CMB bispectrum
we convolve the primordial
potential with the transfer
functions.

Example of transfer function →
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The resulting bispectrum
is here plotted for
l1 = l2 = l3
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The KSW estimator

How to measure non-gaussianity in the CMB?

Goal: Estimate the amplitude fNL of a given theoretical
bispectrum Btheo

l1l2l3
in the CMB map.

The optimal signal-to-noise estimator is

f̂NL =
1

N
∑
l1,l2,l3

Btheo
l1l2l3

Bobs
l1l2l3

Cl1Cl2Cl3

This estimator is computationally extremely costly. It can be
simplified if B can be factorized as Bl1,l2,l3 = (Xl1Yl2Zl3) + perm.

A number of factorizable bispectra has been searched with this
estimator (WMAP, Planck). No primordial bispectrum has been
found. However it is easy to miss something with model
dependent estimators!
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The KSW estimator for oscillations

The (simplified) KSW estimator for oscillations is

f̂NL =
1

N

∫
r2dr

∫
dΩ M3

X (r , n̂)

with
MX (r , n̂) =

∑
lm

(C−1a)lmXl(r)Ylm(n̂)

where Xl(r) is a filter tailored to the oscillating bispectrum.

Precision forecast on fNL
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Parameter estimation

We have 3 unknown
parameters to constrain:

amplitude fNL

phase φ

frequency kc

Verification of the
estimator via MC
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Real world estimator problems

Real data makes the analysis more complicated. Important systematics
that have to be considered:

Non-uniform and incomplete sky coverage

Non-primordial contributions to the bispectrum (e.g.
ISW-lensing)

Foreground cleaning of the CMB maps

Noise properties of the detector
Planck Collaboration: The Planck mission

Fig. 14. The SMICA CMB map (with 3 % of the sky replaced by a constrained Gaussian realization).

Fig. 15. Spatial distribution of the noise RMS on a color scale of 25 µK
for the SMICA CMB map. It has been estimated from the noise map
obtained by running SMICA through the half-ring maps and taking the
half-di↵erence. The average noise RMS is 17 µK. SMICA does not
produce CMB values in the blanked pixels. They are replaced by a con-
strained Gaussian realization.

for bandpowers at ` < 50, using the cleanest 87 % of the sky. We
supplement this ‘low-`’ temperature likelihood with the pixel-
based polarization likelihood at large-scales (` < 23) from the
WMAP 9-year data release (Bennett et al. 2012). These need to
be corrected for the dust contamination, for which we use the
WMAP procedure. However, we have checked that switching
to a correction based on the 353 GHz Planck polarization data,
the parameters extracted from the likelihood are changed by less
than 1�.

At smaller scales, 50 < ` < 2500, we compute the power
spectra of the multi-frequency Planck temperature maps, and
their associated covariance matrices, using the 100, 143, and

Fig. 16. Angular spectra for the SMICA CMB products, evaluated over
the confidence mask, and after removing the beam window function:
spectrum of the CMB map (dark blue), spectrum of the noise in that
map from the half-rings (magenta), their di↵erence (grey) and a binned
version of it (red).

217 GHz channels, and cross-spectra between these channels11.
Given the limited frequency range used in this part of the analy-
sis, the Galaxy is more conservatively masked to avoid contam-
ination by Galactic dust, retaining 58 % of the sky at 100 GHz,
and 37 % at 143 and 217 GHz.

11 interband calibration uncertainties have been estimated by compar-
ing directly the cross spectra and found to be within 2.4 and 3.4⇥10�3

respectively for 100 and 217 GHz with respect to 143 GHz

25
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Conclusions

Non-gaussianities are a unique window into the physics of the
early universe

Despite so far negative results there is still room for
improvement, also with CMB data

Oscillating bispectra have not been extensively searched for and
are theoretically well motivated

The method developed here will be applied to the Planck data
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