

Ayan Mitra

Supernovae Ia, Gravitational Lensing with Supernovae Legacy Survey (SNLS)

Université Pierre et Marie Curie Laboratoire de Physique des Hautes Energies

Gravitational Lensing

- It is the bending of light rays in the presence of massive object.
- The angle of deflection caused by an object of mass *M* for rays of light passing at a distance of *r*

is :

weak lensing requires studying a lot of sources statistically to infer information about the foreground mass.

SNe as cosmological tool

- SN Ia are believed to be result of an explosion of a white dwarf accreting matter and reaching Chandrasekhar mass.
- Supernovae type I lack H emission or absorption lines. Type Ia shows a clear Si absorption line at 6700 angströms.
- if L≈ cste, then we can measure relative distances without knowing L.

 $D_L^2 = \frac{L}{4\pi F}$

By fitting for one parameter, the "stretch" (Perlmutter 1997; Perlmutter et al. 1997; Goldhaber et al. 2001), the observed variation in Type Ia SNe can be reduced to $\sigma_M = 0.15$.

SNe Ia exhibit remarkable homogeneous light curves when corrected for the stretch factor parameter. Enabling them to be used as standard candles. L≈ cste, at 16%.

Background

Kronborg et. al. 2010

- SNLS 3 sample analysis
- 171 SNe la selected out of 233 total SNe
- Ray tracing algorithm used.
- Detection of 3σ lensing signal at 35% chance

Jonsson et.al. 2006 ▶ GOODS sample SNe ▶ 32 SNe analyzed ▶ No strong signs , <µ>=1 ▶ Zero correlation within 68%

Jonsson et. al. 2010

- SNLS 3 sample analysis
- Application of weak lensing approximation
- Result within 5% deviation with ray tracing algorithm

Kronborg et.al. 2010

Gravitational Magnification Computation

SNLS-3 : Lensing Analysis

SNLS-5 : Lensing Analysis

Get_magnification

Ray tracing algorithm

Qlet

Multiple lens-plane method

Weak Lensing approximation

 $\Delta m_{\rm lens}\simeq -2.17\kappa$

Ray tracing vs weak approx. : Deviation in value < 5% (jonssonet.al. 2010)

Gravitational Magnification Computation

To be used on SNLS-5 sample , so to be used on SNe

► To be also used on Simulation

Supernovae Data

1st step : To repeat the same process of SNLS-3 analysis with the same set of data with the **new program**. 4 Fields data from SNLS-3
D1(79)
D2(62)
D3(86)
D4(80)
Total 307 SNe

Magnification Normalization F = Flux in inhomogeneous universe $\mu = \frac{F}{F_0}$ $F_0 = Flux$ in homogeneous universe where, $F_0 = \frac{1}{4\pi} \frac{L_s}{D_L^2}$ with D_L the luminosity distance in a homogeneous universe that fits the cosmological data : FLCDM model with $\Omega_m = 0.27$ So that (mean over sphere at redshift z_s) : $\langle \mu \rangle = 1$ But in our case we estimate F using : homogenous FLCDM Ω_m universe + DM haloes around line-of-sight galaxies so that : $\langle \mu \rangle > 1$ -> need for normalization.

Random SNe positionsTrue galaxy catalog

Comparison of the ray-tracing and weak-lensing approach

Both qlet and get_magnification are feed with the these artificial data

We compare the result between them

144 from the total number of simulation line-of-sight are omitted for going through intervening galaxies -> condition for strong lensing.

Magnification Normalization procedure

 Mean magnification computation in 12 redshift (z_s) bins
 Polynomial Fitting(3rd order) in z_s
 All SNe magnification values corrected

Correlation & Hubble residual

Correlation coefficient of 0.177368 in comparison to 0.18 from SNLS-3 Residual vs Corrected magnification

- correlation coefficient : 0.18 (from SNLS3 Kronborg 2010)
- $r = (0.65 \pm 0.30) \times \mu_m$
- weak signal

Future Works

New line of sight modeling while using the SNLS-5 sample including :

host galaxy identification
new galaxy catalog & photo-z's
new masking
testing other galaxy-halo models

Host Galaxy Detection

Broadly:

Various cut-offs

Redshift and Distance $d=\sqrt{(ax^2+bxy+cy^2)/(KRON)}$ factor

Host Detected : Isolating the best galaxy from other galaxies as the 1st host

Not Detected : May include faint hosts or bad hosts due to polluted image.

Also detection of background host galaxies.

Latest Status

500

50

0

Tentative Detection results : 450 400 ▶ Number of SNe : 439 350 ► SNe with hosts OK : 392 300 ▶ SNe with no hosts : 29 250 200 ▶ SNe with bad hosts : 10 150 ► SNe with dubious hosts : 8 100

439 392 Lind Line-Total Sne Filtered Sne No Hosts Bad Hosts **Dubious Hosts** 29 10 8

Host Galaxy Detection Statistics

New line of sight modeling while using the SNLS-5 sample including :

host galaxy identification
new galaxy catalog & photo-z's
new masking
testing other galaxy-halo models

The end

Selection of good SNe using new masking

Looking for better halo models/scaling laws

Signal Detection

Hubble residual: $\mathbf{r} = \mu_L(SN) - \mu_L(z; \text{ cosmologie}), \mu_L(SN)$ estimated with SN mags.

correlation between : μ_m = -2.5 log₁₀(μ) & r Tentative detection:(Jonsson2007) with 27 SNe from GOODs survey : evidence of a positive correlation at 91%

Correlation coefficient : 0.18 for SNLS3 Kronborg 2010 $r = (0.65 \pm 0.30) \times \mu_m$ weak signal

magnification (-2.5log (µ))