Feedback in Galaxy Formation

Rebekka Bieri

Joe Silk Gary Mamon Yohan Dubois

IAP

Outline

Why is feedback important?

Shuts off Cooling in Clusters

Ejects gas/metals out of a galaxy

Why is it important?

Better understanding Luminosity Function

Supernovae

Simulations

SNe-driven winds limit accretion/SF?
Sufficient mass outflow rate?

Powell+ (2010), Governato+ (2007), Scannapieco+ (2009), Agertz+ (2010)

Supernovae

- Drives evolution of low mass galaxies
- Expel baryons
- Enriches IGM with metals
- Influenced by SF and vice versa

Simulations

SNe-driven winds limit accretion/SF?
Sufficient mass outflow rate?

Powell+ (2010), Governato+ (2007), Scannapieco+ (2009), Agertz+ (2010)

Active Galactic Nuclei

Active Galactic Nuclei

Simulations

10 10[L] (r

Artist Impression

Able to quench cooling flows in clusters
 May also show positive feedback? (Gaibler+ 2012)

Dubois+ (2011+), Martizzi+ (2012+), Springel+ (2005), Di Matteo+ (2005+)

- Drive evolution of high mass galaxies
- Negative Feedback:
 - Expel Baryons
 - Heat interstellar gas —> Halt cooling
- Possible positive feedback? (Croft+ 2006, Mould+ (2000), Morganti+ (2010))

Star Formation in Simulations

Models impose 'local Schmidt-law': $\dot{
ho}_* = \epsilon_* rac{
ho_{
m gas}}{t_{ff}}$

- Some additional criteria or restrictions are included:
 - Density threshold ($n > 0.1 \mathrm{cm}^{-3}$) (most common, RAMSES)
 - Restricting star-formation to gas below some temp
 - Jeans unstable
 - Convergent flows
 - Short gas cooling time
 - Molecular criteria (restricting SF to the 'molecular gas')
 - Turbulence criteria
 - Other possibilities?

Physical interpretation depends on resolved dynamic range of simulation and the mean properties of the galaxy

Star Formation in Simulations

Models impose 'local Schmidt-law': $\dot{
ho}_* = \epsilon_* rac{
ho_{
m gas}}{t_{ff}}$

- Some additional criteria or restrictions are included:
 - Density threshold ($n > 0.1 {
 m cm}^{-3}$) (most common, RAMSES)

Galactic Center

- Restricting star-formation to gas below some temp
- Jeans unstable
- Convergent flows
- Short gas cooling time
- Molecular criteria (restricting SF to the '---
- Turbulence criteria
- Other possibilities?

Physical interpretat dynamic range of si properties (

Pressurised Disk

Simulations:

- Runs with **RAMSES** code, 40 pc resolution:
 - Pure adiabatic hydrostatic case (Teyssier 2002)
 - Pure cooling and star formation
 - Stellar feedback (Teyssier+ 2013)
- NFW halo, 11.4 $10^{10} \,\mathrm{M_{\odot}}$, Bulge
- **galaxy 1**: 10% gas, v200(km/s)=70, typ radius = 3.4 kpc
- **galaxy2**: 50% gas, v200(km/s)=70, typ radius = 3.4 kpc
- galaxy3: 50% gas, v200(km/s)=70, typ radius = 1.2 kpc

Non-pressurised Disk

 10^{0}

 10^{-1}

 10^{-2}

 10^{-3}

H/cc

10% Gas 0.895015470726 Gyr 0.345 0.340 0.335 () 0.330 ₩) > 0.325 0.320 0.315 0.310 0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 x (Mpc) ()0.330 ₩ 0.325

Merci pour votre attention

Merci pour votre attention

Slows down Star Formation in Galaxies

