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1. Analytic? Not quite, but the cosmic 
web is simpler than sometimes 
thought — adhesion model 

2. Also can be understood as an 
architectural ‘spiderweb’, with 
cosmological use?



Zel’dovich Approximation: 
particles go ballistically along 

a gradient of  a potential
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It leads to the introduction of the geometric concept of the
convex hull of the (Lagrangian) velocity potential.

The final step from the geometric convex hull based
solution is taken on the basis of the realization that there
is interesting duality between the representations of the el-
ements of the cosmic web in Eulerian versus Lagrangian
space. The resulting dual geometry formalism is forwarded
and outlined in Section 4. This section also contains an ex-
tensive, partially mathematical, discussion of the concepts of
Lagrangian and Eulerian maps, describing how the walls, fil-
aments and cluster nodes of the cosmic web can be described
in terms of the singularities in the mapping of particles from
Lagrangian to Eulerian space.

In Section 5 we give formal definitions of the Delaunay
and Voronoi tessellations and their weighted counterparts,
the regular triangulation and power diagrams. We show how
they connect directly to Hopf’s solution of the Burgers equa-
tion, arriving at our core result. This is followed by a discus-
sion on how to work with regular triangulations and power
diagrams in practice.

Following the formal and computational aspects of our
dual geometry solution method for the adhesion formalism,
in the final sections of our paper we discuss a few of the phys-
ical results and implications for our understanding of the
structure and evolution of of the cosmic web. In Section 6,
we look at the mass transport and flows in the cosmic web
according to the described adhesion model. Also, we look in
detail at the conservation of momentum and whether this
also remains valid in the presence of singularities.

Also, we assess the density distribution in the compo-
nents of the cosmic web following, the implications for the
hierarchical evolution of in particular the void and filament
population in the cosmic web, and the sensitivity of the cos-
mic web structure for the power spectrum of the initial den-
sity and potential fluctuations. These aspects are shortly
treated in Section 7. Finally, in the concluding Section 9 we
summarize the main issues discussed in this study, and pro-
vide an outlook towards the application in the accompanying
papers.

2 ADHESION

The adhesion model builds on top of the Zeldovich Ap-
proximation (Zeldovich 1970). The Zeldovich Approxima-
tion (ZA) is described by the deceptively simple formula

x(q, t) = q �D+(t)rq�0(q), (1)

where q is the initial comoving coordinate of a particle, x
the coordinate at growing-mode time

1 D+, and �0 the lin-
early extrapolated velocity potential. The complexity of the
model becomes clear when we try to describe the deforma-
tion of a fluid element q+d3q in this scheme. Suddenly this
simple formula describes density evolution, tidal shear and
the anisotropic formation of structures in the Cosmic Web.
The problem with the ZA is what happens after the first
structures form. Since the fluid continues to evolve, multi-
stream regions appear and the model breaks down.

1 From now on, we will consider D+ to be our time parameter,
dropping the (t) to ease notation.

The ZA, a first-order Lagrangian Perturbation Theory
(LPT), gets worse as it is applied to smaller scales, where
fluctuations are larger. Second-order Lagrangian Perturba-
tion Theory (2LPT) is more accurate than the ZA for the
small-fluctuation regime of the initial conditions (Crocce
et al. 2006), but for large perturbations (at late times and
small scales), the higher-order perturbative approach per-
forms even worse than the ZA, typically producing worse
overcrossings, and even overdensities where extreme under-
densities should be (Sahni & Coles 1995; Neyrinck 2013).

A few techniques do improve in various ways on ZA. One
approach is to remove small-scale initial power as in Trun-
cated Zeldovich Approximation (TZA) (Melott et al. 1994).
However if we really want to study the multi-scale properties
of the Cosmic Web, the smoothing in TZA will erase smaller
scale structure in the areas where the growth of structure is
less rapid, for example in voids. An alternative approach,
that incorporates this small-scale structure more accurately,
is to use a non-perturbative spherical-collapse prescription
(Neyrinck 2013) on small scales, either combining this with
2LPT on large scales, as in ALPT (Augmented LPT), or
applying spherical collapse on multiple scales, giving MUl-
tiScale Spherical ColLapse Evolution (MUSCLE) (Neyrinck
2016a).

We explore another technique, called the adhesion
model, that solves the overcrossing problem of the ZA di-
rectly. It freezes structures that form by adding an ad-hoc
viscosity to the fluid. This viscosity only acts when fluid
elements are completely collapsed. The di↵erence between
adhesion and ZA is shown visually in Figure 1.

In the next few paragraphs we will treat the adhesion
model, starting from ZA, moving to Burgers’ equation and
its solution. But first we will have to introduce some of the
mathematical concepts and physical quantities that we use.
We aim to give a concise introduction to the adhesion model.
For a complete treatment we refer to Zeldovich (1970); Gur-
batov & Saichev (1984); Gurbatov et al. (1989); Shandarin
& Zeldovich (1989); Weinberg & Gunn (1990); Kofman et al.
(1992); Vergassola et al. (1994), or the more recent works by
Frisch & Bec (2001); Bec & Khanin (2007); Bernardeau &
Valageas (2010b).

2.1 Lagrangian vs. Eulerian coordinates

We use the words Lagrangian and Eulerian to denote a parti-
cle’s initial and final coordinates, denoted q 2 Q and x 2 X.

A particle travels from its initial position q at time
t = 0, to its current position x at time t = t0. We will
represent this transformation for all particles in two maps,
the Eulerian and Lagrangian maps (each word refers to the
domain, not the image, of the map),

Et : X ! Q and Lt : Q ! X, (2)

2.1.1 Mass vs. Volume

The physical interpretation of both maps becomes clear if
we think of Eulerian space as the representation of volume,
whereas Lagrangian space represents mass. We will speak of
an element q 2 Q as a particle, and x 2 X as a position.
Following this piece of nomenclature it should be emphasised
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2.3 Burgers’ equation

The ZA lets us follow the density evolution and the forma-
tion of the cosmic web up to the advent of the first caus-
tics. To prevent shell-crossing and keep the structures once
formed, an artificial viscosity is added to the equation of
motion, emulating the e↵ects of gravitational adhesion. The
result is Burgers’ equation

@u
@D+

+ (u ·rx)u = ⌫r2
x u. (18)

Here ⌫ is the introduced viscosity parameter. Burgers’ equa-
tion has an exact solution (Hopf 1950)

u(x, D+) =

R1
�1

x�q
D+

exp [G/(2⌫)] d3q
R1
�1 exp [G/(2⌫)] d3q

, (19)

where

G(x, q, D+) ⌘ �0(q)�
(x� q)2

2D+

. (20)

If the viscosity coe�cient ⌫ is finite, the solution can
be e�ciently computed by a method of Gaussian convolu-
tions. This algorithm is relatively easy to implement, and it
is extensively described in Weinberg & Gunn (1990). We will
focus only on the inviscid limit where ⌫ approaches zero.

If the viscosity coe�cient ⌫ is small, the main con-
tribution in Equation 19 comes from the region where G
finds a maximum for some fixed x and D+. In fact the nor-
malised exponential term will reduce to a Dirac-delta func-
tion �d(q � q?), where q? is chosen such that G(x, q?, D+)
is a global maximum, and

lim
⌫!0

u(x, D+) =
x� q?

D+

. (21)

By taking the position q?, where the maximum in
G(x, q, D+) is attained, as a function of x we find the Eule-

rian map.
Over time this map will develop singularities, describing

shocks in the medium. These shocks have zero thickness and
are infinitely dense, though they have a well defined and cal-
culable mass. In the next section we will develop a geometric
understanding of this shock formation in the 1-dimensional
case.

3 GEOMETRIC SOLUTION

The geometric formalism by which the one-dimensional ad-
hesion model is found is illustrated in Figure 4. We will move
through this figure step-by-step. In the inviscid limit where
⌫ ! 0 the solution to Burgers’ equation becomes

�(x, D+) = max
q


�0(q)�

(x� q)2

2D+

�
, (22)

where �(x, D+) is the Eulerian velocity potential (Hopf
1950).

In this form the solution can be interpreted as a
parabolic needle scanning the surface of the potential �0(q)
(Pogosyan 1989; Kofman et al. 1992). The needle is de-
scribed by

P (q,D+) =
(x� q)2

2D+

+ h, (23)

Figure 3. Scanning parabola interpretation: scanning the poten-
tial with a parabola shows how we can divide particles in stuck
(shaded pink) and free. The apex of the parabola gives the Eu-
lerian position of the particle at which the parabola touches the
potential. If the parabola has two touching points with the po-
tential, there is a shock. Those cases are shown here in red.

setting h such that the parabola touches the surface exactly.
This means the parabola cannot intersect the potential. The
apex of the parabola gives the current location x of a particle
originally located at point q.

At some points the troughs in the potential are too deep
for the needle to reach. The parabola then has multiple La-
grangian touching points with the surface of the potential.
Both touching points will map to the same position in Eule-
rian space. The area in between is then collapsed to a single
point. As the needle widens in time, a larger and larger area
becomes inaccessible, accreting more and more matter onto
the singularities. This construction is illustrated in Figure 3.

Vergassola et al. (1994) showed that Equation 22 is
equivalent to the computation of a Legendre transform3.
In this paper we go one step further, showing the connec-
tion with power diagrams (additively weighted Voronoi dia-
grams). We first revisit the Legendre transform and convex
hull formalism of Vergassola et al. (1994).

3.1 Convex hull formalism

Rewriting Equation 22 shows how we can transform between
Eulerian and Lagrangian space. The (x�q)2 term inside the
maximisation contains an x2 term which we can move to the
left-hand side of the equation, giving

D+�(x, D+) = max
q


D+�0(q)�

x2

2
+ x · q � q2

2

�
, (24)

H(x, D+) = max
q

['(q, D+) + x · q] , (25)

introducing the ‘Lagrangian’ potential (shown in Figure 4A)

'(q) ⌘ D+�0(q)�
q2

2
(26)

3 a Legendre transform expresses a convex function in terms of its
derivative f⇤(y) = maxx[f(x) + xy]. If f is not convex, f⇤⇤ = fc.
Applying the Legendre transform twice returns the convex hull
of a function.
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Figure 1. Zeldovich approximation and adhesion compared. In a 2D toy-model the di↵erence is very clear. Outside the shocks the two
models give identical structures (Note that in a mathematical context, any discontinuity in the velocity field may be considered a shock.).
Where in ZA we find multi-stream regions, adhesion shows shocks with zero (or one pixel width) thickness and infinite density. Note
that the mass within each pixel is still finite.

the advanced evolutionary stages. A major complication for
this is the non-local nature of gravity.

As a result, even while impressively successful in follow-
ing the early linear and quasi-linear phases of structure de-
velopment, the Zeldovich approximation is intrinsically un-
able to follow the advanced stages in which the cosmic web
is emerging and condensing. We may identify three impor-
tant aspects that would need a more sophisticated physical
model.

Most prominent is the fact that the Zeldovich approxi-
mation is unable to deal with the self-gravity of the emerging
structures. This translates into a ballistic motion of mass el-
ements defined by their location in the initial density and
gravity field, and the gradual di↵usion of the weblike mor-
phological features that could be recognized in the cosmic
density field at an earlier stage. In essence, this follows from
the intrinsically force-free nature of the equation of motion
corresponding to the Zeldovich approximation.

A second — and related — aspect is the intrinsically
hierarchical evolution of the cosmic mass distribution. This
not only concerns the hierarchical build-up of galaxies and
galaxy halos by means of a continuous process of merging
matter clumps. It also concerns the hierarchical build-up and
evolution of the morphological elements of the cosmic web
itself. This involves the merging of voids (Sahni et al. 1994;
Sheth & Van de Weygaert 2004; Wojtak et al. 2016), as well
as the merging of small-scale filaments and tendrils into the
ever larger dominant and elongated arteries of the cosmic
web (see e.g. Shen et al. 2006; Cautun et al. 2014).

An additional third issue is that of the sensitivity of
the cosmic web to the underlying cosmology. The evolution,
structure and dynamics of the cosmic web are to a large

extent dependent on the nature of dark matter and dark
energy. Since the evolution of the cosmic web is dictated by
gravity, the relevant cosmological variables will leave their
imprint on the structure, geometry and topology of the cos-
mic web. It translates into the question in how far the struc-
ture of the complex network of nodes, filaments and walls is
dependent on the underlying power spectrum. While a pro-
found assessment of this has not yet materialized, answering
this issue would facilitate the ability to infer constraints on
cosmological parameters from the cosmic web, a key goal of
modern cosmology.

1.5 Adhesion

The adhesion formalism is a direct and natural extension of
the Zeldovich approximation (Zeldovich 1970) that is capa-
ble of addressing the aspects outlined above. The adhesion
approximation was first introduced by Gurbatov & Saichev
(1984). In a series of papers, the adhesion approximation
was shown to successfully describe skeletal structure of the
cosmic web (Gurbatov et al. 1989; Shandarin & Zeldovich
1989; Kofman et al. 1990; Weinberg & Gunn 1990; Kofman
et al. 1992; Sahni et al. 1994; Vergassola et al. 1994; Frisch
& Bec 2001; Bec & Khanin 2007; Bernardeau & Valageas
2010b; Valageas & Bernardeau 2011; Gurbatov et al. 2012)
and provide a surprisingly insightful rendering of the evolv-
ing weblike morphology of the cosmic matter distribution
(Hidding et al. 2012).

To emulate the adhesive e↵ect of self-gravity around
emerging structures, the adhesion formalism introduces an
artificial gravitational source term in the equation of motion
for mass elements. This artificial viscosity term ⌫ causes
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2.3 Burgers’ equation

The ZA lets us follow the density evolution and the forma-
tion of the cosmic web up to the advent of the first caus-
tics. To prevent shell-crossing and keep the structures once
formed, an artificial viscosity is added to the equation of
motion, emulating the e↵ects of gravitational adhesion. The
result is Burgers’ equation

@u
@D+

+ (u ·rx)u = ⌫r2
x u. (18)

Here ⌫ is the introduced viscosity parameter. Burgers’ equa-
tion has an exact solution (Hopf 1950)

u(x, D+) =

R1
�1

x�q
D+

exp [G/(2⌫)] d3q
R1
�1 exp [G/(2⌫)] d3q

, (19)

where

G(x, q, D+) ⌘ �0(q)�
(x� q)2

2D+

. (20)

If the viscosity coe�cient ⌫ is finite, the solution can
be e�ciently computed by a method of Gaussian convolu-
tions. This algorithm is relatively easy to implement, and it
is extensively described in Weinberg & Gunn (1990). We will
focus only on the inviscid limit where ⌫ approaches zero.

If the viscosity coe�cient ⌫ is small, the main con-
tribution in Equation 19 comes from the region where G
finds a maximum for some fixed x and D+. In fact the nor-
malised exponential term will reduce to a Dirac-delta func-
tion �d(q � q?), where q? is chosen such that G(x, q?, D+)
is a global maximum, and

lim
⌫!0

u(x, D+) =
x� q?

D+

. (21)

By taking the position q?, where the maximum in
G(x, q, D+) is attained, as a function of x we find the Eule-

rian map.
Over time this map will develop singularities, describing

shocks in the medium. These shocks have zero thickness and
are infinitely dense, though they have a well defined and cal-
culable mass. In the next section we will develop a geometric
understanding of this shock formation in the 1-dimensional
case.

3 GEOMETRIC SOLUTION

The geometric formalism by which the one-dimensional ad-
hesion model is found is illustrated in Figure 4. We will move
through this figure step-by-step. In the inviscid limit where
⌫ ! 0 the solution to Burgers’ equation becomes

�(x, D+) = max
q


�0(q)�

(x� q)2

2D+

�
, (22)

where �(x, D+) is the Eulerian velocity potential (Hopf
1950).

In this form the solution can be interpreted as a
parabolic needle scanning the surface of the potential �0(q)
(Pogosyan 1989; Kofman et al. 1992). The needle is de-
scribed by

P (q,D+) =
(x� q)2

2D+

+ h, (23)

Φ

q

Figure 3. Scanning parabola interpretation: scanning the poten-
tial with a parabola shows how we can divide particles in stuck
(shaded pink) and free. The apex of the parabola gives the Eu-
lerian position of the particle at which the parabola touches the
potential. If the parabola has two touching points with the po-
tential, there is a shock. Those cases are shown here in red.

setting h such that the parabola touches the surface exactly.
This means the parabola cannot intersect the potential. The
apex of the parabola gives the current location x of a particle
originally located at point q.

At some points the troughs in the potential are too deep
for the needle to reach. The parabola then has multiple La-
grangian touching points with the surface of the potential.
Both touching points will map to the same position in Eule-
rian space. The area in between is then collapsed to a single
point. As the needle widens in time, a larger and larger area
becomes inaccessible, accreting more and more matter onto
the singularities. This construction is illustrated in Figure 3.

Vergassola et al. (1994) showed that Equation 22 is
equivalent to the computation of a Legendre transform3.
In this paper we go one step further, showing the connec-
tion with power diagrams (additively weighted Voronoi dia-
grams). We first revisit the Legendre transform and convex
hull formalism of Vergassola et al. (1994).

3.1 Convex hull formalism

Rewriting Equation 22 shows how we can transform between
Eulerian and Lagrangian space. The (x�q)2 term inside the
maximisation contains an x2 term which we can move to the
left-hand side of the equation, giving

D+�(x, D+) = max
q


D+�0(q)�

x2

2
+ x · q � q2

2

�
, (24)

H(x, D+) = max
q

['(q, D+) + x · q] , (25)

introducing the ‘Lagrangian’ potential (shown in Figure 4A)

'(q) ⌘ D+�0(q)�
q2

2
(26)

3 a Legendre transform expresses a convex function in terms of its
derivative f⇤(y) = maxx[f(x) + xy]. If f is not convex, f⇤⇤ = fc.
Applying the Legendre transform twice returns the convex hull
of a function.
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Figure 14. Time evolution in Eulerian and Lagrangian space. On the left is shown the Lagrangian view of the regular triangulation. We
start at time t = 0 with a triangulation of the regular grid. On the right is shown the Eulerian view of the corresponding power diagram.
We have shown collapsed filaments using thick red lines and collapsed nodes using blue circles. This realisation was computed with a
power-spectrum index of n = �3/4.
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Figure 10. Top-left: An example 1D displacement potential. Lower-left panels: Three snapshots of the evolution of the sectional-Voronoi
tessellation. Generators at grid points begin at �(q) = 0, but as �(q) scales with the growth factor D+, generators lift o↵ the x-axis by
a distance

p
2�max � 2�(q). The Eulerian cell of each grid point is the intersection of the x-axis with the full 2D Voronoi tessellation;

‘particles’ are at these intersection points. In su�ciently deep potential wells, 2D Voronoi cells rise so high that the orange line no longer
intersects them. Green circles show where the particles would be using the ZA, i.e. simply x = q � d�

dq . In uncollapsed regions, the

intersection points correspond to the circles, but note that in collapsed regions (at x ⇡ 47, 108), green circles overcross. Here, the black
lines acquire a thickness proportional to the number of black lines that have merged above them, i.e. collapsed and adhered to that
position. Right: Illustration of how the displacement field comes from this construction; see footnote 8.

The mass per unit area of a wall is given by the length
of a Delaunay edge, the mass per unit length of a filament is
given by the area of a Delaunay face and the mass of a node
is given by the volume of a Delaunay cell. MN: I changed
the following. But possibly remove? I think it is addressing
my question, but I’m not sure it helps ... what I was really
wondering about was what happens for a slightly elliptical
density contour – it is strange to me that in perfect circu-
lar symmetry, we can have a circular patch collapse in La-
grangian space, but what happens if there is a tiny amount
of noise? I guess there would be some more filamentary La-
grangian patches filling in the circle that circumscribes the
triangle? Just something to contemplate; it’s perfectly fine
to say nothing else on the topic. As we increase the reso-
lution, these measures converge, neglecting any additional
Fourier modes unveiled on small scales.

MN: Note that collapsed cells are always triangular in
2D, and tetrahedral in 3D, except in unphysically symmetric
cases around nodes. This suggests the origami-like ‘tetrahe-
dral collapse’ rotational toy model of simultaneous halo, fil-
ament, and wall collapse (Neyrinck 2016b), in which haloes
are tetrahedral in Lagrangian space. In full gravity, La-
grangian N-body halo shapes are rounded versions of these
shapes (Neyrinck, Colombi & Sobolevski, in prep; see also
Fig. 5 of Neyrinck 2018), between two extreme approxima-
tions: spherical and polyhedral collapse. In Eulerian space,

tetrahedral collapse is even less accurate; N-body haloes are
ellipsoidal, while tetrahedral-collapse haloes are still tetrahe-
dral, albeit with Toblerone filaments reflected through them.
Still, the tetrahedral Lagrangian shape of haloes in adhesion
gives some motivation for further study of such an angular,
geometric toy model.

The matter density in voids may be computed by di-
viding the Voronoi volume at time D+ = 0 over the current
volume. Because no structures have collapsed in voids, all
Voronoi cells are still accounted for.

It is tempting to follow a similar recipe to compute a
correction term on the surface density of walls or similarly
the line density of filaments. Not all Delaunay edges map to
Voronoi dual faces of the same size. In this case however, we
have no object at D+ = 0 to compare with. Also the den-
sity of edges in the Delaunay triangulation depends on the
direction of the wall due to the anisotropy of the sampling
grid. At the moment we’re unable to provide a clear method
that is independent of the sampling.

5.6 Reduction to Voronoi model

We could idealise the setting, by assigning a single particle
to every void. This void is then in its entirety the region of
power for this particle. Translating this to a velocity poten-

MNRAS 000, 1–28 (2018)
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Structural-engineering spiderwebs: 

“Force polygons” 
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James Clerk Maxwell: perpendicular construction



Structural-engineering spiderwebs 
Force polygons → force diagram 

Form/force diagrams are reciprocal duals 
(Maxwell 1860’s) 
⟂ edges, e.g. Voronoi↔Delaunay 
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What sort of  thing is not a 
spiderweb? 

An obvious case … 

More subtle: force 
diagram cannot close



Ash & Bolker (1986), see also Whiteley et al. (2013) showed 
that in 2D, spiderwebs and sectional Voronoi tessellations are 
the same 

Each polygon can shrink/enlarge, sides sliding perpendicular 
to dual edges  

http://github.com/neyrinck/sectional-tess/



Lang & Bateman 2011, 
Lang 2015, 2018: 
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Web w/mass deposited Web

Hybrid view
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Area(�) � node mass

Figure 5. Upper right: A cosmic web generated from the displacement potential in Fig. 4. Each blue polygon is a sectional-Voronoi
cell (defined in Eq. 3), inhabiting Eulerian (final comoving position) space; the web collectively is a spiderweb. Lower left: The
corresponding reciprocal dual tessellation, in Lagrangian (initial comoving position) space; each node of the Eulerian web is a triangle
here. In architecture, the lengths of each white edges would be proportional to the tension in the corresponding spiderweb thread.
Upper left: the web at upper right, adding a translucent black circle at each node of area proportional to its mass (the area of its black
triangle at lower left). Lower right: A Minkowski sum of the first two tessellations, every cell halved in linear size, i.e. ↵ = 1

2 in Eq. (4).

ization of the universe in the adhesion model, truncating the
structure at a fixed resolution, consists of a set of particles
of possibly di↵erent mass, at vertices of a sectional-Voronoi
tessellation. If the edges of sectional-Voronoi cells are re-
placed with strands of string, this network can be strung
up to be entirely in tension. The tension in each strand will
be proportional to the length of the corresponding edge of
the weighted Delaunay triangulation, which in cosmology
is proportional to the mass per unit length along the fil-
ament. So, to construct this with the optimal amount of
constant-strength material to be structurally sound, strand

thicknesses would be proportional to their thicknesses in the
Minkowski sum.

Note the tree-like appearance in the bottom-right panel
of Fig. 5. In a tree (a structural spiderweb), the summed
cross-sectional area of the trunk is roughly conserved af-
ter each branching. In our case, similarly, the total cross-
sectional area (mass) of a large filament is conserved after
branching. Referencing actual arachnid spiderwebs, gravity
is like a haunted-house explorer, clearing strands aside, caus-
ing them to adhere and produce thicker strands. Note that
there are other networks in nature with approximate con-
servation of summed thickness across branches, such as bi-
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Council of  Giants YouTube video, https://www.youtube.com/watch?v=VzL7xGzfNlU

(McCall 2014) 



cosmic web = origami tessellation = spiderweb 
example, “Council of Giants” (McCall 2014)



Eulerian-Lagrangian 2D universe (run with 
ColDICE (Sousbie & Colombi 2016)

Initial (Lagrangian) coordinates log-density (Eulerian) log-density



Folding in 4 dimensions — hard to visualize!

Mark Neyrinck



Looking more like an origami 
tessellation:

Mark Neyrinck



2D twist fold: a polygon rotates through some angle. 
A pleat extrudes from each face2 Mark C. Neyrinck

Top: ↵ = ⇡/2. Bottom: ↵ = ⇡/6.

Figure 1. Density fields



Changing a spin parameter for two joined 
nodes 

Filaments may spin, slightly 
correlating spins of  neighboring galaxies/clusters



“Twisting” is a major feature of  origami-like collapse. 

Chirality/spin correlation observed in SDSS (Slosar et 
al. 2008) 

Correlations between neighboring galaxy spins can give 
intrinsic alignments of  their major axes — this 
systematic needs to be understood for weak lensing

Can origami ideas help scientifically?

1230 A. Slosar et al.

Figure 3. This figure shows the constrains on the binned correlation func-
tion c for angular (top panel), redshift (middle panel) and projected (bottom
panel) spaces. Two lines correspond to our best-fitting exponential (solid
red) and Gaussian (dashed green) fits.

5 R ESULTS

In Fig. 3, we plot the results of our binned estimation of c(r). From
the two figures, it is immediately clear that there is a hint of an
excess at low values of r. The statistical significance of this excess
is marginal, at about !χ 2 of 7.5, 14.2 and 5.6 for angular, real and
projected distances with six extra degrees of freedom associated
with six bins. This corresponds to 2σ–3σ detection in the redshift
space but a non-detection in other spaces.

To understand this excess better, we calculate the probability con-
tours on the a − b plane using exponential and Gaussian likelihoods.
These are plotted in Fig. 4 and the relevant numbers are given in
Table 1. How significant are these detections? The improvement
in χ 2 is between nine and 12 with respect to zero correlation in
angular and redshift cases with two free parameters. Within a fre-
quentist approach, this is significant at 2σ–3σ level. The excess
at low redshift is not significant in the case of projected distances,
although visually, the low-distance points are not incompatible with
an excess.

A more appropriate statistical procedure is the Bayesian evidence
(Slosar et al. 2003; Beltrán et al. 2005; Trotta 2007) which we
calculate for all our two model parametrizations and are also shown
in Table 1. These can be calculated exactly for a simple problem
like ours. Evidence depends weakly on the prior size, and in this we
chose the prior on a between 0 and 1/1.5 for Gaussian/exponential
case and b between 0 and 1000 arcsec or 1 or 0.5 Mpc h−1 projected.
Regardless of the exact number employed, the evidence ratio is
between a few and a few tens units implying a weak evidence or a
hint for angular and redshift spaces, but not for the projected space.
This is consistent with results from the frequentist approach above.

Figure 4. This figure shows the constrains on the a–b plane for all data
sets and models under consideration. Thick lines enclose 68.3, 99.4 and
99.8 per cent likelihood volume for the weighted sample. Thin lines are the
same for unweighted sample. The top and bottom rows show results in real
and angular spaces, respectively. The left- and right-hand columns are the
exponential and the Gaussian fittings exponentially.

Finally, we acknowledge the fact that the exponential and Gaus-
sian forms were chosen a posteriori after seeing the data, and hence
the improvements in fits contain a subjective a posteriori factor.

5.1 Systematics

We can now briefly discuss some of the main systematic effect that
might affect our measurements.

Rogue pairs. As discussed in Section 4.1, we manually looked
at all pairs in the clean sample and discarded rogue pairs. It is
an important systematic check, because we have at the same time
convinced ourselves that manually classifying a small subset (80
galaxies) of the total sample gave consistent results.

Weighting. Repeating our measurements with unweighted data,
changes result by less than 5 per cent.

Cleanliness level. We have repeated the analysis with the su-
perclean sample. There are many fewer galaxies in the superclean
sample (Lintott et al. 2008) and so the statistical significance de-
creases considerably. We have no significant detection in any of the
spaces considered. The error bars increase by a factor of 2 to 2.5,
but the central values in individual bins remain consistent. While

C⃝ 2008 The Authors. Journal compilation C⃝ 2008 RAS, MNRAS 392, 1225–1232
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3D? Polyhedron inverts and rotates through some 3D angle. 
• An extruded 2D twist fold (filament/Toblerone) from each face 
• A planar pleat (wall) from each Toblerone face 
• Some simple laws relate filament rotations

(Neyrinck 2016)



Spiderweb useful for cosmology, in principle! 
sensitive to shear (e.g. redshift/distance mapping, ~Alcock-Paczynski) 
1% error in x-y scaling factor in idealized case;  
several% with correlation function 
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Figure 10. Detecting shear in a Voronoi model for a 2D density field. Top panels: Voronoi density fields from the orange

generators, using Eq. (6.1), with isotropic (� = 1) and sheared (� = 2) distance functions. Third panel: In blue, contour

plot of the 2D two-point correlation function ⇠(x, y), measured from the top panel. Orange arcs are contours of constant

distance from the origin. The conventional method to measure shear, from ⇠(x, y), essentially finds an ellipticity of the

orange arcs that best fits the ellipticity of blue contours, with ambiguities in detail. Bottom: Error bars, typically ⇠ 1%, in

fitting � using the Voronoi shear method described in the text, from a realization such as in the top panel, with input shear

� = 1. Fiducially, ‘power raised’= 1, but we explored sensitivity to inaccuracies in assumed void/filament density profiles

by raising the ‘observed’ density field to various powers, along the x-axis, before fitting �.



Testing spiderwebness: Any cosmic web built from a 
potential displacement field is a spiderweb, in real space 
• 3D print it and see how much weight it can hold! 
• Or build it out of  string and see if  any strands always sag

What if  it’s not a spiderweb? 

• Observations were not converted into a cosmic web in a way 
consistent with adhesion — substructure within adhesive 
filaments, walls, nodes in the real universe! also strands need to be 
included within voids 

• Still, worth trying a standard cosmic web definition 
• Redshift-space distortions! (but could be a probe of  them) 
• Rotational (curl) component of  displacement field — unexpected 

vorticity? 



The circulatory system is a fractal of  maximal surface 
area, to distribute nutrients efficiently to a volume

 photographer Jan Kriwol and artist Markos Kay, "human after all"

See Scale (West 2017)

http://kriwol.com/
http://www.mrkism.com/


The cosmic web may be a fractal surface/volume 
efficiently transporting matter into galaxies? Indeed, 

surface dimension ~ 2.5 

 photographer Jan Kriwol and artist Markos Kay, "human after all"

See Scale (West 2017)

http://kriwol.com/
http://www.mrkism.com/


Mark Neyrinck

Conclusions

- A cool example of  art + science! 
- Origami, “analytic” geometry, structural 
engineering, cosmology interacting and helping 
each other


