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PART I. Assembly bias from conditional excursion sets

PART II. Work in progress on extrema statistics for LSS 
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Introduction
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Assembly bias (“there’s more to a halo than its mass...”) is somewhat of 
an obvious statement. The opposite would be surprising

Surprisingly difficult to find the optimal variables to parametrize it

Most quantities have unexpected behaviors in some regime 

Because halos are not isolated, their position in the cosmic web is an 
obvious candidate to explain the diversity of hosted galactic populations

Observationally relevant: surveys (VIPERS, COSMOS, GAMA) find 
different mean colors as a function of the distance to the cosmic web
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DM halos form out of patches in the initial conditions that:

are overdense “enough” to collapse by today (“enough” inferred 
from spherical collapse, ±c = 1.686 in vanilla models)

are not contained in larger patches of the same density (“no cloud-
in-cloud”)

described as random walks of mean density field reaching a 
threshold (solution of Langevin equation with colored noise)

abundance modeled as first-passage PDF with correlated steps 

close analogies with (P)BHs and stochastic inflation

Excursion set theory
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±c   

At each position x, ±R(x  ) draws a trajectory as R changes

Scale ¾ of first crossing fixes M (= 4¼R3½=3)

First crossing is always upwards (positive slope) 

 ¾(MB)   ¾(MA)  
 ¾ 

 ±(¾)  

 MA   MB  
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Halo A 
larger M 

Halo B
smaller M

 M

Excursion set theory



From first crossing to upcrossing
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Abundance of halos nh(M )  ⟷ first crossing pdf f(¾) 

But steps are correlated (not Markovian walks): f(¾)  is not known

However, correlations make zig-zags unlikely. Can relax FIRST into 
UPWARDS. Probability that ± = ±c and ±’ ≡ d± /d¾  ≥ 0

For Gaussian field:

Very accurate approximation! (also in NG case) MM & Sheth (2012-2014)

IHP

MM & Sheth (2012)

Bond et al. (1991)



Upcrossing distribution
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Check against exact first crossing of Monte Carlo walks (histograms) with various 
power spectra and generic barrier  b = ±c + ®s. Dotted line is Bond et al. (sharp-k)

Large massSmall mass

IHP
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Formation history
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±c  /D(z1) 

As threshold drops with time, first crossing moves/jumps to larger M

Continuous growth of M is accretion, finite jumps are mergers. Whole 
formation history M(z) in the trajectory. Slope gives 1/accretion rate. 

 ¾(M2)   ¾(M1)  

±c /D(z2)  

Lacey and Cole (1993)

 ¾ 

 ±(¾)  

 M(z1)   M(z2)  

z2 > z1  
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Accretion rate and formation time

Halo A 
higher zf 

Halo B
lower zf

MA (z1) = MB (z1)

MA (z2) > MB (z2)  

±c  /Df,B  

±c /D(z1)  

 ±(¾)  

 ¾ 
 ¾A  = ¾B   ¾(M/2)  

Formation historyEnvironment

Same mass at z1, but ¾A varies less with z : slower accretion. 
At ¾(M/2) halo A crosses a higher threshold : forming earlier

But sharp turns are unlikely: B prefers denser environment than A 
(not so for uncorrelated steps). Assembly bias!

Marcello Musso IHP

Dalal et al. (2008)
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Saddle point of the potential
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Saddle point of the potential
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Mean potential in sphere of radius Rs 

One neg. eigenvalue of shear: 

Anisotropic conditional mean density (at fixed finite distance):

Saddles of the potential are saddles of the conditional mean of ±.
Outflowing direction (filament) has higher mean density. 

anisotropy
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Assembly bias

±c   

 ±(¾)  

 ¾ 

<±fil>  

<±void>  

Halo B
lower zform 

larger dM/dz

Halo C
higher zform 

smaller dM/dzHalo A
larger M

 ¾A  ¾B = ¾C  
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Halo A (filament): large ⟨±|S⟩, more likely, smaller ¾, larger M

Halo B (filament): low ⟨±|S⟩, less likely, larger ¾, smaller M

Halo C (void): same ¾ as B, shallow slope, low accr., early forming
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Assembly bias
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Saddle point of typical mass too. 

Max of ¾? and min of M? along the filament. Moving away from nodes, 
halos are less massive



17/29

Assembly bias
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Slowly accreting halos (small ®?) are more likely in voids

Larger  ®? near saddle point and even larger near nodes

PDF of ® has typical accretion rate ®?
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Assembly bias
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Early forming halos (small D?) are more likely in voids

Larger D? near saddle point and even larger near nodes

PDF of D has typical formation time D?
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Assembly bias
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Typical accretion rate Typical mass

Saddle point of ®? and of D?. Away from nodes, halos form earlier and 
accrete less today. Different level surfaces (and ≠ from mass)
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Assembly bias

Marcello Musso IHP

Typical accretion rate Typical formation time
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Large-scale bias near a filament
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Near the filament center halos with 
small accretion rate are more 
biased, opposite near the nodes

Consequence of inversion in the 
constrained excursion set walks 

Similar qualitative trend as found in 
N-body
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Lazeyras, MM, Schmidt (2016)



What's next?
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Halos as centers of convergence of the velocity field

IHP



What's next?
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Halos as minima of the density of binding energy ²

Replace ∇i±  = 0 with ∇i² = 0,  -∇i∇j± with ³ij = -∇i∇j² 

Identified by spheres with null dipole moment. That is, set the origin of 
the coordinates on the center of mass.

TH filter:

Describes change of ±  as any axis shrinks. Triaxial excursion sets!

pos definite ³ij means that infall time from any direction decreases 
with distance  

No problem of divergences, unlike ±

M.Musso (in prep)
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What's next?
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The center of mass of a 
sphere of Lagrangian radius 
near the center of mass of 
the protohalo moves in the 
direction opposite to the 
displacement

∇i² = 0 at the center of 
mass of the protohalo

∇i∇j² is indeed neg. definite

IHP



What's next?
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At small mass, barrier becomes “stochastic” and scale-dependent 

 

Main culprits for the scatter: shear, ellipticity, velocity dispersion. (See 
also Borzyszkowski, Ludlow & Porciani).  Need a model!

Different types prefer different db/d¾ 

At equal ¾ (mass) they select different slopes (accr. rates)

Dalal et al. (2008)

The “not-so-critical” density?

Robertson et al. (2008)

MPA



Excursion sets allow to model accretion rates and formation times

Qualitatively correct prediction of the distribution of secondary halo 
properties in the cosmic web after conditioning on the proximity to 
stationary points of the potential

Saddles define a local metric for the various halo properties. The 
position in the cosmic web is part of assembly bias

Accretion (plus AGN feedback...) is a key ingredient to understand 
galaxy colors. Correlation with angular momentum induced by tidal 
torques may be used to mitigate the problem of intrinsic alignments

Need better models with clear dynamical content to improve accuracy 
and control the errors. Halos as minima of the potential are a very 
promising candidate. 

Voids? PBHs?

Conclusions

Thanks!!



Solution by back substitution
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An even better approx:

Upcrossing captures f(s) for all P(k), filters and barriers. Yet, the 
mass function works only if ±c → .84 ±c . There is a flaw in the ansatz! 

(Bond et al.)

(Press-Schechter)

MS12

MS13

Monte Carlo of LCDM power spectrum
with Top Hat filter

°=1/2

IAP
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Assembly bias
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Typical accretion rate Typical formation time
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