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Gravita.onal	instability

Gaussian	primordial	fluctua*ons	

How	is	the	cosmic	web	woven?

	cosmic	web

expansion

de Lapparent+86
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Liouville	theorem:

Poisson	equa.on:

Before	shell-crossing,	moments>2	can	be	neglected	(velocity	dispersion,…)	and	we	get	
evolu*on	equa*ons	for	the	cosmic	density	and	velocity	fields:	
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These	highly	non-linear	equa*ons	can	be	solved	using	numerical	simula*ons	or	analy*cally	in	
some	specific	regimes.	Exact	solu*ons	are	crucial	to	understand	the	details	of	structure	forma*on.	
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1.	CV 3.	Galaxies2.	Contexte 4.	Cosmologie 6.	Résumé5.	ProjetI.	Gravita5onal	instability II.	Anisotropic	Cosmic	web III.	Birthplace	of	haloes	and	galaxies

con.nuity	equa.on:

Euler	equa.on:

Vlasov-Poisson	equa.ons:	
dynamics	of	a	self-gravita.ng	collisionless	fluid

�� = 4⇡a2G(⇢� ⇢̄)Poisson	equa.on:



Anisotropic	dynamics	within	the	cosmic	web:	
MaXer	escapes	from	voids	to	sheets,	filaments	
and	ends	up	in	nodes.	

	

 5DM	simula*on	by	C.	Pichon
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From	Eulerian	to	Lagrangian	space

Eulerian	pt	of	view:		
‣ Fixes	the	frame	
‣ Fields	on	a	grid	
‣ δ,	u	
‣ «	volume-weighted	sta*s*cs	»

Lagrangian	pt	of	view:		
‣ Follows	the	fluid	
‣ Par*cules	
‣ x=q+ψ	
‣ «	mass-weighted	sta*s*cs	»			
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Balistic trajectories

Lagrangian	dynamics:	Zeldovich	pancakes

x = q + ⇣
final position

initial position

displacement

At	linear	order	in	the	displacement,	the	Vlasov	Poisson	system	reduces	to	

rq⇣̈ + 2Hrq⇣̇ =
3
2
⌦H

2rq⇣

Yakov Zeldovich

which	has	the	same	solu*on	as	the	linear	density	contrast	i.e	

⇣ZA = D+(t)⇣+(q)

⇢ZA(q, t) =
⇢̄���

Q3
i=1(1�D+(t)�i)

���

so	that	the	density	acer	a	Zeldovich	displacement	reads:	

Anisotropic	collapse	of	structures	and	forma*on	of	caus5cs!	
Walls	form	first	followed	by	filaments	and	nodes.	

eigenvalues of the deformation tensor:

 10
 10

« l'essence de la théorie des catastrophes c'est de ramener les discontinuités apparentes à la manifestation d'une évolution 
lente sous-jacente. Le problème est alors de déterminer cette évolution lente qui, elle, exige en général l'introduction de 
nouvelles dimensions, de nouveaux paramètres. » - René Thom (1991)

-

https://fr.wikipedia.org/wiki/Ren%C3%A9_Thom
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nouvelles dimensions, de nouveaux paramètres. » - René Thom (1991)

-

Hidding’13

https://fr.wikipedia.org/wiki/Ren%C3%A9_Thom


The	connected	cosmic	web

Dick Bond

Dmitri Pogosyan

Lev Kofman

Bond,	Kofman,	Pogosyan	1996:	first	understanding	of	the	origin	of	the	cosmic	web.	

The	seeds	of	walls,	filaments	and	nodes	lie	in	the	asymmetries	of	the	primordial	
Gaussian	random	field	then	amplified	by	gravita*onal	instability.	

Rare	peaks	in	the	ICs	will	become	the	nodes	of	the	cosmic	web	i.e	rich	clusters.	
Their	ini*al	shear	will	set	the	preferred	direc*ons	along	which	correla*on	bridges	will	
connect	them	to	other	nodes.	

simulation mean field around 20 main peak patches

1σ contour

Lagrangian space

Importance	of	peak	&	constrained	random	field	theories	  11
 11
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The	skeleton	picture

 12
 12

Filaments are the field lines 
joining the maxima through saddle points.

peak

peakpeak

saddle

saddle

saddle

voidvoid

void

‣	 cosmic	 web	 extractors	 (water-shedding,	 discrete	
topology,	…)	

‣	 local	theory	allowing	for	theore*cal	predic*ons	for	
extrema	counts,	length	of	filaments,	surface	of	voids,	
curvature	…	which	are	very	compe**ve	cosmological	
probes!	

‣	 Cosmic	 connec*vity	 κ:	 typically,	 how	 many	
filaments	connect	to	a	node?	

BBKS, Pogosyan+09, Gay+12, …*

Sousbie+08, Sousbie+11, …*

* among many others!

SC+18
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Peak	theory

Applica*ons	 to	 cosmology	 then	 follows	
with	Doroshkevich	 (1970),	 Bardeen-Bond-
Kaiser-Szalay	(1986)	and	many	others	…

(c) C. J. Horvath 

Schwartzman+12

1940’s:	 Kac-Rice	 first	 studied	 the	 peaks	 in	
1D	 signals,	 with	 important	 applica*ons	 in	
communica*on	 theory	 and	 electronic	
signals	

1957:	 Longuet-Higgins	 extended	 this	
work	 to	 the	 2D	 case	 in	 the	 context	 of	
ocean	surface	waves	(width	and	shape	
of	 the	 crests,	 distance	 between	
troughs,	…)	
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Peak	theory

Let	us	consider	a		field					and	its	first							and	second								deriva*ves.x xi xij
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P (x, xi, xij)

If	the	field	is	Gaussian	(large	scales/early	*mes),																																						follows	a	
normal	distribu*on	

Peak	theory:	Gaussian	predic.ons

Exp
⇣
�Xt·C�1·X

2

⌘

p
det(2⇡C)

X = (x, xi, xij)

=

where	the	covariance	matrix	C	of	the	field,	its	first	and	second	deriva*ves	can	
easily	be	computed	from	the	power	spectrum.	
E.g	in	3D,	once	the	fields	are	rescaled	by	their	variance:

C=

x x1 x2 x3 x11 …

with	spectral	parameter

� =
�2
1

�0�2

=

⌦
rx2

↵
p
hx2i h�x2i
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If	the	field	is	Gaussian	(large	scales/early	*mes),	the	total	number	density	of	
cri*cal	points	then	reads	

Peak	theory:	Gaussian	predic.ons

2D 3D
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If	the	field	is	Gaussian	(large	scales/early	*mes),	the	total	number	density	of	
cri*cal	points	then	reads	

Peak	theory:	Gaussian	predic.ons

2D 3D

max
min

filamentswalls

And	as	a	func*on	of	peak	height	(analy*cal	in	2D,	not	in	3D)	:	



Gram-Charlier	expansion	(analogous	to	a	Taylor	expansion	for	PDF):	
The	moment	expansion	of	the	general	PDF	P(x)	around	a	Gaussian	G(x)	is	an	Hermite	
expansion:

where	Hermite	polynomials	are	polynomials	of	order	n	in	x,	orthogonal	wrt	the	
Gaussian	kernel	G.

to all order in non gaussianityP (x) = G(x)

"
1 +

1X

n=3

1
n!

hxniGC Hn(x)

#

A	similar	expansion	holds	for																																	P (x, xi, xij)

see	also	Pogosyan+00,	Gay+11,	SC+13

Peak	theory:	Non-Gaussian	predic.ons
Gay+11
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and	allows	us	to	get	predic*ons	for	number	density	of	peaks	to	all	order	in	non-
Gaussianity	once	rota*onal	invariants	are	used	:

Gay+11
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Gaussianity	once	rota*onal	invariants	are	used	:

Gay+11

Those	cumulants	can	be	predicted	from	PT	/ �



Gram-Charlier	expansion	(analogous	to	a	Taylor	expansion	for	PDF):	
The	moment	expansion	of	the	general	PDF	P(x)	around	a	Gaussian	G(x)	is	an	Hermite	
expansion:

where	Hermite	polynomials	are	polynomials	of	order	n	in	x,	orthogonal	wrt	the	
Gaussian	kernel	G.

to all order in non gaussianityP (x) = G(x)

"
1 +

1X

n=3

1
n!

hxniGC Hn(x)

#

A	similar	expansion	holds	for																																	P (x, xi, xij)

see	also	Pogosyan+00,	Gay+11,	SC+13

Peak	theory:	Non-Gaussian	predic.ons

and	allows	us	to	get	predic*ons	for	number	density	of	peaks	to	all	order	in	non-
Gaussianity	once	rota*onal	invariants	are	used	:

� = 0.1

-	-	-	-	Gaussian	
									First	NG	correc5on

Gay+11

Those	cumulants	can	be	predicted	from	PT	/ �
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Peak	theory:	clustering	(i.e	2pt	stat)

Same	ideas	can	be	used	to	also	predict	the	clustering	of	peaks	by	means	of	their	2	point	
correla*on	func*on	(higher	order	sta*s*cs	are	also	possible	although	not	much	inves*gated	
so	far):

Bias expansion

Exclusion zone

Baldauf, SC+16
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• independent	from	bias	(M/L	ra*o)	

• easier	to	measure	in	the	data	(less	sensi*ve	to	masks,...),	more	robust

Alterna*ve	to	the	usual	use	of	N-point	correla*on	func*ons	/	poly-spectra,...	which	is	:

Because	topology	is	about	shapes,	connec*vity,	holes,...		and	is	invariant	under	con5nuous	
deforma*on	(stretching,	twis*ng,	bending...).

Topological	es.mators



!21

III.	Comptages	de	galaxies

Topology	of	excursion	sets
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III.	Comptages	de	galaxies

Topology	of	excursion	sets



➢	Minkowski	func.onals	(topological	invariants):	

 22

g=0 g=1 g=2

d+1	MFs	in	d	dimensions.	
Mathema*cal	genus	in	2D	=	number	of	handles/holes	(max	number	
of	cutngs	along	closed	curves	without	disconnec*ng	the	surface)

extrema 
counts

upcrossing 
minima=+1

upcrossing 
maxima=-1

Topological	es.mators
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g=0 g=1 g=2
This	is	a	topological	invariant:	two	surfaces	are	homeomorphic	if	
they	have	the	same	genus.

d+1	MFs	in	d	dimensions.	
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➢	Minkowski	func.onals	(topological	invariants):	
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g=0 g=1 g=2

In	ND,	we	define	the	Euler-Poincaré	characteris.c	(in	2D,	=2-2g)	as	
the	alterna*ng	sum	of	Bet	numbers:

� =
X

i

(�1)ibi

where	bi	is	its	rank	of	the	i-th	homology	group	(b0=number	of	
connected	components,	b1=circular	holes,	b2=cavi*es,…).	
Gauss-Bonnet	theorem:	χ	is	the	integral	of	the	Gaussian	curvature	
Morse	theory:	it	is	the	alterna*ng	sum	of	extrema.	

The	Euler	characteris*c	obeys:	addi.vity,	mo.on	invariance	and	
condi.onal	con.nuity,	it	is	one	of	the	MF.	

This	is	a	topological	invariant:	two	surfaces	are	homeomorphic	if	
they	have	the	same	genus.

d+1	MFs	in	d	dimensions.	
Mathema*cal	genus	in	2D	=	number	of	handles/holes	(max	number	
of	cutngs	along	closed	curves	without	disconnec*ng	the	surface)

extrema 
counts

upcrossing 
minima=+1

upcrossing 
maxima=-1

Topological	es.mators



Topological	es.mators
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d+1	MFs	in	d	dimensions:	Euler-Poincaré	characteris*c	and??	
in	2D:	length	of	isocontour	+	encompassed	volume	
in	3D:	surface	of	isocontour+encompassed	volume+integrated	mean	
curvature

➢	geometrical	es.mators	and	cri.cal	sets:	
peak/saddle/void	counts	
length	of	filaments	
surface	of	walls	
…	

➢	Minkowski	func.onals	(topological	invariants):	



Euler-Poincaré	characteris.c

 24

�3D(⌫) = �
Z

P (x, xi, xij)�D(xi) detxij⇥(x� �0⌫)

Using	a	Gram-Charlier	expansion	and	invariant	variables,	on	can	get	a	predic*on	to	all	
orders	in	non-Gaussianity



Euler-Poincaré	characteris.c

 24

�3D(⌫) = �
Z

P (x, xi, xij)�D(xi) detxij⇥(x� �0⌫)

Using	a	Gram-Charlier	expansion	and	invariant	variables,	on	can	get	a	predic*on	to	all	
orders	in	non-Gaussianity

� = 0.1

-	-	-	-	Gaussian	
									First	NG	correc5on

�� �G
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	 ‣ Birth	and	growth	of	the	cosmic	web	
‣ Random	fields,	Peak	theory,	topology	
‣ Cosmic	connec*vity

Topology	of	the	cosmic	web	

A	10-year	long	work	with	Dmitri	Pogosyan	(UAlberta)	&	Christophe	Pichon	(IAP)	
Codis,	Pogosyan,	Pichon,	2018,	MNRAS,	479,	973
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6.	Résumé6.	Résumé

Global	connec.vity	for	GRF

How	many	filaments	connect	to	a	node?

Number	 of	 connected	 saddles	 are	 measured	
using	 the	 Disperse	 skeleton	 algorithm	
(Soubsie+11)	in	GRF	realisa*ons.

Can	we	predict	the	mean	connec*vity?
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Because	each	filament	goes	through	one	and	only	one	saddle	pt,	on	average:	

          = 4                                                 in 2D GRF

          =                                                    in 3D GRF

6.	Résumé6.	Résumé

Global	connec.vity	for	GRF:	theory
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Because	each	filament	goes	through	one	and	only	one	saddle	pt,	on	average:	

          = 4                                                 in 2D GRF

          =                                                    in 3D GRF

6.	Résumé6.	Résumé

Global	connec.vity	for	GRF:	theory

Cubic 
Lattice

Defects? Asymptotic result?

In	d	dimensions,	we	relied	on	numerical	integra*ons:	
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Full	distribu*on	of	connec*vity:

3D

n s=0

n s=-1

n s=-2

n s=-3

5 10 15 20
0 .00

0 .05

0 .10

0 .15

0 .20

connect ivity k

PHk
L

Dependence	with	peak	height:

3D

n s=0

n s=-1

n s=-2

n s=-3

-1 0 1 2 3 4
2

4

6

8

10

12

14

16

peak he igh t n

Xk»
n\

6.	Résumé6.	Résumé

GRF	connec.vity:	dependence	with	peak	height

The	higher	the	peak,	the	more	connected
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6.	Résumé6.	Résumé

Global	connec.vity:	evolu.on	with	cosmic	.me

Filaments	merge	in	a	cosmology-dependent	way!

‣ Measurement	in	cosmological	simula*ons:
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6.	Résumé6.	Résumé

Global	connec.vity:	evolu.on	with	cosmic	.me

Filaments	merge	in	a	cosmology-dependent	way!

‣ Measurement	in	cosmological	simula*ons:

Using	a	Gram	Charlier	expansion,	one	can	get	
predic*on	at	arbitrary	order	in	NG

With

‣ Predic*ons:
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6.	Résumé6.	Résumé

Local	mul.plicity	and	bifurca.on	points

For	galaxy	forma*on,	what	maXers	most	is	how	many	filament	connect	locally	onto	a	galaxy.	
At	small	enough	scale,	a	peak	is	always	ellipsoidal	so	that	only	two	branches	of	filament	s*ck	
out.	Then	those	branches	bifurcate.	Some	bifurca*ons	appear	so	close	to	the	peak	that	they	are	
physically	irrelevant.	Hence	we	will	define	the	mul.plicity	as	the	local	number	of	filaments.
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6.	Résumé6.	Résumé

Local	mul.plicity	and	bifurca.on	points

For	galaxy	forma*on,	what	maXers	most	is	how	many	filament	connect	locally	onto	a	galaxy.	
At	small	enough	scale,	a	peak	is	always	ellipsoidal	so	that	only	two	branches	of	filament	s*ck	
out.	Then	those	branches	bifurcate.	Some	bifurca*ons	appear	so	close	to	the	peak	that	they	are	
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bifurcations
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6.	Résumé6.	Résumé

Local	mul.plicity	and	bifurca.on	points

For	galaxy	forma*on,	what	maXers	most	is	how	many	filament	connect	locally	onto	a	galaxy.	
At	small	enough	scale,	a	peak	is	always	ellipsoidal	so	that	only	two	branches	of	filament	s*ck	
out.	Then	those	branches	bifurcate.	Some	bifurca*ons	appear	so	close	to	the	peak	that	they	are	
physically	irrelevant.	Hence	we	will	define	the	mul.plicity	as	the	local	number	of	filaments.

µ = � nbifurcations

µ ⇡ 3

µ ⇡ 4

in	2D

in	3D
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6.	Résumé6.	Résumé

Local	mul.plicity

The	 denser	 the	 environment,	 the	 higher	 the	 mul*plicity	 therefore	 bringing	 less	 coherent	
angular	momentum	and	genera*ng	more	ellipsoidal	galaxies?
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6.	Résumé6.	Résumé

Local	mul.plicity

The	 denser	 the	 environment,	 the	 higher	 the	 mul*plicity	 therefore	 bringing	 less	 coherent	
angular	momentum	and	genera*ng	more	ellipsoidal	galaxies?
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on

Peak
Filaments

Let	us	count	filament	crossings	at	a	sphere	of	radius	R	around	the	central	peak…



R
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on

Peak
Filaments

Let	us	count	filament	crossings	at	a	sphere	of	radius	R	around	the	central	peak…
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on

Peak

2D peaks on  
the sphere

Filaments

Let	us	count	filament	crossings	at	a	sphere	of	radius	R	around	the	central	peak…
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on

Size of peak patches  
depends on their height
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on

But	how	dense	are	those	filaments?
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on

Typically,	 two	 to	 three	 dense	 filaments	 dominate	 and	 therefore	 define	 a	 plane	 of	 accre*on…	 in	
agreement	with	numerical	simula*on	(Danovich+12)	and	observa*ons	of	plane	os	satellites	around	
galaxies.
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‣ Peak and constrained random field theories are 
paramount to understand the birth and growth of the 
cosmic web 

‣ Many analytical results can be obtained in the weakly 
non-linear regime 

‣ The topology and geometry of the cosmic web carries 
important cosmological information and is key for 
galaxy evolution. 

‣ In particular, we now have a precise understanding of 
the connectivity of the cosmic web (the cosmic crystal) 

Conclusion	
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6.	Résumé6.	Résumé

Local	mul.plicity:	towards	a	theore.cal	predic.on


